Reasoning about Asynchronous Behaviour in Distributed Systems

Peter Henderson

Department of Electronics and Computer Science
University of Southampton
S017 1BJ, UK
peter@ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/"ph

Abstract

When a new component is added to an existing, dis-
tributed system, it has to co-operate with existing compo-
nents in a way that doesn’t interfere badly with the original
system. Adding new components to an existing system is
simplified if their communication is asynchronous. It al-
lows for looser coupling. Unfortunately, the fact that the
communication between components is asynchronous adds
to the difficulty of reasoning about their behaviour. This
paper gives an illustrative example of a simple distributed
system with asynchronous behaviour and discusses how its
behaviour can be described and reasoned about in terms of
goals. This formalises what we believe to be contemporary
engineering practice. Experimental support for reasoning,
including animation, is particularly appropriate and practi-
cal in these circumstances, because the properties which we
must reason about are emergent rather than compositional.

1. Background

In large scale, distributed systems of the type that global
enterprises depend upon, business process evolution is a
particular problem. If a new business activity requires new
software support, this usually manifests itself as a set of new
applications which must co-exist with a set of existing ap-
plications and work together with them successfully [13].
The software engineers responsible for designing, building
and ultimately delivering the new applications must reason
about the potential behaviour of the system as a whole and
what will happen after the addition of the new applications.

In general, the behaviour of the system as a whole can
be described in terms of properties to be maintained and
goals to be achieved. An example of a property to be main-
tained is that, where old functionality is not being replaced

or modified, it should continue to be available to the users
as it was before the evolution. An example of a goal to
be achieved would generally be more specific, based on the
detailed functionality of the old or new applications. For
example, if the global business was banking, and the new
functionality was a new financial product to be sold over
the internet, a goal of the evolved system could be that any
customer who engages in purchasing that product should be
able to complete that transaction promptly. You can imagine
how that might be expressed more formally in a real case.

One way to characterise this type of problem, which en-
ables us to discuss the nature of the difficulties which face
the software designer, is to consider a system architecture
which allows the free addition of new, collaborating appli-
cations. In [10] we discussed, informally, such an archi-
tecture and the rules which new applications would have
to obey if they were to be able to co-exist within an al-
ready functioning system without disrupting it. Since then,
with architectures such as MQ, .NET and J2EE, for Enter-
prise Application Integration and in particular integration
of web-services, these problems have become more, rather
than less, prominent.

2. The Nature of Enterprise Systems

One way of looking at large-scale, distributed systems
is as an integration of co-operating applications [1, 6, 7, 8,
13, 17]. Figure 1 depicts a set of applications, including
A and B, co-operating within a system S. We shall assume
that the applications A and B communicate with each other,
and with others, by asynchronous message passing. This
is without loss of generality, since synchronous communi-
cation between applications, even with Remote Procedure
Call (RPC) and Remote Method Invocation (RMI), is rare in
enterprise systems. This is because, in these circumstances,
the total communication will usually consist of a series of

calls and some time will elapse before that sequence is com-
pleted. In order to ensure that this sequence of synchronous
calls is valid, the engineer has reasoned about the asyn-
chronous effect of the sequence. This is not to deny the
importance of transaction processing, which makes asyn-
chronous behaviour look synchronous. In particular, dis-
tributed transaction processing is very important. But this
importance is for behaviour which is “near” databases. We
are addressing extended transactions over heterogeneous
applications and long time periods. Transaction technolo-
gies, for us, happen within applications. They prevent ap-
plications from interfering with each other near databases.

The situation we are particularly concerned with is, what
happens when a new application (C, say) joins an existing,
running system? What can C assume about the other ap-
plications, some of which it must communicate with? Con-
versely, what can they assume about C, so that they are not
damaged?

Figure 1. A system with a component waiting
to join

These are important questions to answer if we are going
to fully benefit from the plug-and-play opportunities which
component-based systems offer. It is not sufficient that the
components (in our case, applications) have plugs and sock-
ets which fit each other. This is just syntax. It is also neces-
sary that they have behaviours which fit, in that they work
together, in particular new with old.

In a web-services based architecture, the usual objective
is to publish a new application and have it provide a service
to existing and future applications. Providing a service is
relatively straightforward, in that the service provider can
dictate constraints which the service user must obey if they
are to avail themselves of the service. The service provider
can protect itself from bad users and it can even provide ser-
vices to existing users (applications) by publishing its ser-
vice in the form they expect. So this gives us the mecha-
nism, both to evolve a service and to keep faith with legacy
applications which use it. But, how do we know that the en-
hanced behaviour will combine in a satisfactory way with

existing applications?

This is the context in which our problem is cast. Pre-
viously [13], we have addressed this problem informally,
in the context of enterprise scale components (Shops, Cus-
tomers, Malls etc.). In this short paper we give an example
of a much simpler system with many of the properties of
large-scale, asynchronous distributed systems. The exam-
ple is small enough that we can discuss more formally the
type of problems that arise in predicting the behaviour of
such systems under change. In this context, we can also
discuss the contribution of animation to the process of de-
sign validation.

3. Asynchronous behaviour

Consider the applications shown in Figure 2. These are
supposed to be part of a very simple (very abstract) trad-
ing system in which items are traded for cash. The partici-
pants (applications) can transmit items or cash to each other
in messages. These messages take time to travel and hence
reasoning about the behaviour of the system as a whole nec-
essarily means that we need to reason about asynchronous
behaviour. In the next Section, we will consider a more
extensive example. Here we concentrate of defining a few
concepts.

—items »

<-cash —

Figure 2. A system of trading components

First, let us look at a possible behaviour for a component
such as A in Figure 2. Suppose it behaves as follows:

do forever
receive cash from g;

do forever({
receive item from g;
send cash to q;

}

for each g in P
do forever
send item to qg;

This informal notation needs some explanation. The
do forever construct introduces a new thread running

in parallel with the thread which created it. As its expres-
sion suggests, the thread is an infinite loop. The above be-
haviour description introduces a number of threads. The
first of these is able to receive messages of the form cash
from anyone. The receipt of a message binds the name of
the sender to the parameter ¢, which this first thread just
ignores. We are working at a level of abstraction which
concerns only the message-passing behaviour of our appli-
cations.

The second thread receives an item and sends a cash
message in reply, thus using the name of the sender se-
lected from the incoming message. We assume that mes-
sage passing is buffered and that as a consequence sends
will seldom block. If we had been concerned that the
send might block we could have created a new thread
using thread{send cash to gq;}, which spawns a
new thread to execute the single statement in parallel with
its creator, and then stops. Note that we assume an implicit
thread prefixes each occurrence of do forever (so
do forever S is equivalentto thread{for(;;)S}
to use a C/Java idiom).

The third construct in our behaviour description uses
a constant P which is the collection of other applications
which this one can communicate with. It then sets up | P|
threads which will send arbitrary items to each other par-
ticipant at arbitrary intervals. We could, of course, have
coordinated the receipt of cash with the sending of items.
We have chosen not to do this, because the behaviour we
have given has some interesting consequences. We rather
assume that the application keeps records of which items
have been paid for. Consequently, each cash message will
contain an identification of which item it refers to. At any
point in time an application will have some items that it has
sent, but which have not been paid for, and possibly one
item it has received which it has not paid for. It is possible
that payments will be received which refer to items which
have not been sent. Reasoning about this eventuality should
tell us that this cannot happen, if our applications and their
supporting communications structure behaves correctly. Of
course, such things do happen in practice when our system
is failing.

Let us now look more carefully at the behaviour of our
application, in the context of the system shown in Figure 2.
The application A, executing the above program, assumes
that all the others are executing the same, or consistent,
programs. The application A has a goal. It is to send as
many items as it can and to receive as much cash as it
can. The fact that it trusts its customers to pay up is not
an issue we discuss, it is part of the application’s business
process. Rather, we are interested in how we as engineers
reason about the behaviour of this application in a context
such as we have shown here. Since messages take time to
travel, we are reasoning that cash will eventually arrive as a

consequence of items sent. The application’s goal is of the
form collect cash for item sent to g. In fact, we have a set
of goals, one for each outstanding item sent to ¢ and many
for each ¢ in our set P of acquaintances. These are not the
only goals. Another is to be honest and pay for everything
we receive. Finally, there are goals which are simply to
send (apparently unsolicited) items in the hope that others
act like us and always, eventually, pay up. Of course, this is
just an abstraction of a more reasonable concrete behaviour.

The reasoning which the engineer uses to design an ap-
plication such as this, can be formulated as attempting to
reach a set of goals. Knowing that the consequences of ac-
tions will be delayed by the time messages take to travel
(and the time others take to get round to replying), the en-
gineer reasons as follows: assuming others behave in ways
which | have predicted then the consequences of the actions
performed by my application will be to achieve one or more
of the goals | have set. To try to validate the design deci-
sions, the engineer will reason about special cases, such as
one copy of the application talking to another copy of the
same application. Does that behave appropriately? Another
special case is where it is imagined that all participants in
a scenario cease proactive behaviour and the whole system
comes to a quiescent state, ridding itself of all undelivered,
unresponded-to messages. Will the application have arrived
at an appropriate state? For example, will all outstanding
payments have been made? The answer for our application
is affirmative, assuming every other participant sends cash
reactively.

The interesting issue is that, while we reason about these
special cases of behaviour, we never expect to see them in
practice. In an asynchronous system such as this we will
always have a large number of messages outstanding. From
the viewpoint of a single application, it will always have
goals that are not yet met.

Consider now what happens when an application, plug-
compatible with the one above, but behaviourally different
is added to the mix. What are the consequences for it? And
what are the consequences for the existing, legacy applica-
tions? For example, the above application is both buyer and
seller. It could be specialised to have only one of these be-
haviours. Would those specialisations work with each other
and with the more general component. At this level of com-
plexity it is straightforward to see that they would. There
are many derivatives of this application which we could de-
velop. Eventually, we get into a more complex situation.
We get into the situation where behaviour is emergent rather
than compositional. We get into a situation where the pre-
dicted behaviour is seen, and progress continues to be made
towards the goals each application has set for itself, but
where additional unpredicted behaviour is also seen. This
additional behaviour emerges as a consequence of the in-
teractions between applications. Once seen, we can usually

reason about its consequences in much the way that we rea-
son about the consequences of our own decisions. The prob-
lem is seeing it in the first place. This is where modelling
and animation can help. Before we discuss that, however,
we need a more illustrative example.

4. A moreillustrative example

Let us look at another very simple example of asyn-
chronous behaviour. This example is supposed to have the
characteristics of a set of enterprise applications, working
together, but be simple enough that we can illustrate some
of the problems that arise when we reason about changes
we plan to make to such a system.

The example is a simple, self-organising collection of
applications. We imagine that these applications are objects
in two-space. Indeed, since this is just an illustrative exam-
ple, all we are interested in is their location. We are going
to organise that they keep sufficiently far apart from each
other so as to avoid the possibility of collision. And we are
going to organise that they keep sufficiently close together
S0 as to occupy a restricted amount of space. We are going
to insist that the applications communicate with each other
asynchronously and that the only way that any application
can know the location of any other is by receipt of a mes-
sage, which will necessarily contain information which is a
little out-of-date.

This is a very artificial example. It does however allow
us to make our points about how to formulate behaviour
in such systems and how to reason about that behaviour
both locally and globally. And it does contain some of the
essence of the behaviour of typical Enterprise Application
Integration solutions.

In our simple example, the behaviour we will give each
application is identical, and as follows

do forever
for each g in P
send myLocation to g;

do forever ({
receive gLocation from g;
if (| myLocation - gLocation | < 100)
moveAwayFrom gLocation; else
if (| myLocation - gLocation | > 400)
moveTowards gLocation;

}

This defines two threads, each running forever. The first
thread sends the location of this application, repeatedly, to
all other applications. We assume that P is the set of all
applications other than this one. The second thread receives
messages from each other participant (application), in inde-
terminate order, and makes a suitable move away from or

toward the location of that application. The message pass-
ing is buffered, but the buffers may be of restricted length.
We will discuss the effect of restricting the size of buffers
in due course.

The two-space in which the applications are arranged has
been artificially restricted. The size of the available space
(400) and the size of the separation (100) are arbitrary, of
course. These are sizes which have been used in some of
the experiments reported on here. A little combinatorics,
and a little geometry, suffices to prove that they allow for
up to 19 applications to eventually find homeostasis. If 20
applications are set running with these parameters, not all
of them will reach their goals.

This is exactly the kind of behaviour we observe in En-
terprise Application Integration. That is why a problem
such as this is relevant to the issue of reasoning about En-
terprise Application Integration.

In Enterprise Application Integration we will have many
different applications running and exchanging messages
[2, 3, 9]. Each will have a set of goals which it is trying
to achieve. Over time it will achieve some of these goals
and acquire others. Should it ever reach a point where it
has achieved all its goals, it will be quiescent, until an-
other goal arrives or another message instantiates a generic
goal and the application sets about achieving that. It is this
formulation in terms of sets of goals which we believe is
the way that engineers reason about the expected behaviour
of the complex systems which constitute large-scale Enter-
prise Application Integration solutions. The simple exam-
ple we have chosen allows us to illustrate this formulation in
terms of goals, without having to encumber that description
with e-Commerce domain details.

Suppose we have a number of applications running, all
executing the algorithm given above. We can characterise
their behaviour in terms of a set of goals to be achieved.
For a given application p assume that P is the set of all
applications other than p. Now, if ¢ is in P, we will have
the following two goals (for p with respect to q)

G1 : |pLocation — gLocation| > 100
G2 : |pLocation — gLocation| < 400

where pLocation and qLocation are the vector positions
of the applications p and ¢ respectively. In fact there will
be n — 1 pairs of such goals for p, if we assume there are n
applications altogether in our scenario.

It is important to think of these 2n — 2 goals as sepa-
rate. Hence we refer to a set of goals to be achieved by an
application. The reason is that we are going to discuss situ-
ations where our system (the set of applications) is making
acceptible progress (i.e. doing what it was designed to do)
but where the conjunction of these goals is never achieved.
Note that a goal is not an invariant. Usually a goal is not
true, we are striving to make it true. It may be that an appli-

cation has properties which it wishes to maintain as invari-
ant, but these are not its goals in the sense in which we are
using the term here.

Using the combinatorics and geometry referred to ear-
lier, we know that at most 19 applications can be supported
if all are to reach the quiescent state where they never move
again. That is, where all have reached homeostasis. If 20 or
more are running, they will progress to a state where some
(perhaps zero) will reach that state, but where not all will.

How do we know this? Actually, it is quite difficult to
prove that 19 applications, all executing the above program,
will eventually settle. This proof will have to be based on
some notion of fairness. It is equally difficult to predict
the eventual state of a system with 20 or more applications.
Again, fairness would play an important role. It is actually
quite difficult to describe the state which 20 applications
might reach, since we know they will not all remain sta-
tionary. In this simple example, we resort to stating that
they might perhaps settle into a restricted region of two-
space. Experimental evidence suggests this is what hap-
pens. This is a particularly simple example of nearly-met
goals. Notwithstanding these difficulties, the program we
have written for each application is in some sense “obvi-
ous” and one we would anticipate might achieve some, if
not all, of the goals of each application. From experiment,
we conjecture that the 20 applications which never settle al-
ways arrange themselves in a recognisable global state, re-
gardless of buffering. The experiments we have performed
can be observed, with a suitably configured browser, at the
URL given in [24].

This is where our formulation in terms of sets of goals
comes in. Consider the components shown in Figure 1.
Suppose these components are our applications and that
they are all executing the program given above. Consider
the situation between A and B, from A’s point-of-view. At
some early stage the goals G1 and G2 for A (with respect to
B) may be not-met, because the applications are too close or
too distant. At some later stage, they may be met, because
the behaviours of A and B both move towards achieving
this. Later still, because of the existence of other applica-
tions, A may find itself in a state where again one or more
of its goals are not-met. Thus we can see the way that be-
haviour is described in terms of sets of goals. A has a set
of goals, 2n — 2 of them in this simple example. At any
point in time it has satisfied a subset of them. Occasionally
all of them. It makes progress by trying to satisfy goals in
its current set. Its ultimate state is not quiescent. Large,
enterprise-scale systems exhibit this type of behaviour. In
practice, we are able to predict their progress accurately by
describing progress in terms of goals being met.

This formulation also allows us to incorporate the arrival
of new applications, necessary if we are to reason about
software evolution. In Figure 1 assume that C' is a new copy

of our simple application. Adding it to S is incorporated in
our behaviour model, because our formulation considers be-
haviour to be localised. That C modifies the behaviour of
others is modelled by their adoption of additional goals, al-
though we will need to explicitly modify their behaviour in
some circumstances. This is an issue we return to later.

The application we have described is apparently “state-
less”. If we consider that it does not remember which items
it has sent, then it is indeed stateless. If we consider that it
saves its state on stable storage, then we can treat it as state-
less. Consequently an application is partially robust against
failure. It can restart and continue in a sensible manner. To
make it totally robust against failure, in particular against
the receipt of inconsistent information, we would need to
arrange that a symmetric, end-to-end agreement was imple-
mented. This is a topic we note here, but which we shall not
address.

Observe that the program given above is not the only pro-
gram we could have chosen. Indeed, it is far from the more
sophisticated programs used to achieve goals of this sort in
practice. In particular, the goals themselves are not held
explicitly by the application, although in this case they are
simple reformulation of the two actions which the applica-
tion takes. However, even this simple program has some
interesting idiosyncracies, which its designers must be able
to reason about if they are to deploy this application safely.

The first idiosyncracy is how the application’s behaviour
is dependent upon the buffering in the message system.
Suppose that messages, containing location information,
are quite considerably delayed. By the time A acts upon
a message from B, it (B that is) may well have moved. A
will then move towards or away from where B was, rather
than where it is now. Will this have significant effect upon
global behaviour? More importantly, will this have signifi-
cant effect upon A’s local perception? Should the designers
worry about this and ensure, to the extent that they can, that
the messages are not delayed unduly? Or that delayed mes-
sages are not acted upon?

It is here that experimental evaluation comes into its
own. It is here that animation can serve to support our rea-
soning, as follows. We collect experimental evidence of
certain behaviour, sufficient to construct a conjecture which
we might test and ideally establish by some formal means.

For example, in one experiment we ran, using a simple
graphical animation package, a certain configuration of ap-
plications nearly-settles when the asynchronous messages
are not delayed. It is not obvious a priori what will happen
if messages are delayed, especially if they are delayed by
a substantial amount. Experimental evidence suggests that
for quite significant delays, the configuration continues to
nearly-settle. This is not proof that it will always happen
but it does lead to the obvious observation that to nearly-
settle is stable. That is, once achieved, it will remain. If

the applications have nearly-settled, it doesn’t matter how
delayed the messages are because the information they con-
tain will be nearly-accurate. The global observation is that,
information about where objects were is a good approxi-
mation to where they may be now, especially since settling
down is an emergent behaviour of the system in which our
applications find themselves.

Settling and nearly-settling are stable, emergent be-
haviours. A system, having settled, will remain settled. A
system, having nearly-settled, will remain nearly-settled.

A second experiment which we performed was as fol-
lows. Suppose the new application C' has a different be-
haviour from the existing applications (A, B, etc). How
will this affect the behaviour of those older applications. In
particular, suppose we give C the following behaviour.

do forever
for each g in P
send myLocation to g;

delta=0;
do forever ({
receive glocation from g;
if (agitated)delta=delta+l;
if (| myLocation - gLocation |
< 100 - delta)
moveAwayFrom gLocation; else
if (| myLocation - gLocation | > 400)
moveTowards gLocation;

}

Here, we have added the ability for new applications to co-
operate by being willing to be closer to others by an amount
which they increase if they are agitated. We won’t give the
details of “agitated” here. Suffice it to say that an applica-
tion is agitated if it has moved back and forth over a small
region for some time. How will this new application be-
have? Will a new application of this sort, added to a settled
situation, fit in? The interesting case, given the parameters
we have used here, is if the new application is the 20th. The
19 original applications would settle, as we claimed earlier.
Would the new application’s tolerance create enough room
for it to settle? After some experimentation it is eventually
obvious that it will not. The new application’s tolerance of
proximity is not matched by the old application. So when-
ever the new one moves close to an old one, the old one
moves away. While a scenario with all new applications
does settle, no mixture of old and new does.

The reason is that the goals of the old application remain
as they were. To modify their behaviour we have to modify
their goals. We have done these experiments too, allowing
old applications to download new behaviour shown above.
In this simple scenario, the old applications were allowed
to download the new behaviour. Eventually, in every exper-
iment we ran, every old application eventually took on the
new behaviour. This experiment can be observed at [24].

5. Practical reasoning

We have argued that complex distributed systems, of the
sort that constitute Enterprise Application Integration solu-
tions, are reasoned about by their designers in terms of local
goals. In practice, individual applications are conceived of
as always having an outstanding set of goals which they are
trying to achieve. At any point in time one or more of these
goals may be achieved. New goals arrive, either as a conse-
quence of new information instantiating generic goals, or as
new business objectives. These new goals may require new
behaviour. Eventually every goal may be achieved, yet we
may never have the situation where an application reaches a
quiescent state where all goals have been discharged. Nev-
ertheless, we succeed in building such applications and we
do this by using practical means of reasoning about them.

Our reasoning can benefit from mechanical support.
Model checking [5, 15, 18] has proven its practicality in
these situations. It has been successfully applied at an en-
terprise level [14, 20]. The advantages of model checking
are that behaviour can be observed, at first by animation,
but then more comprehensively by setting up experiments
which test safety, liveness and progress properties. This ex-
perimentation leads to conjectures which we reason about
outside the support of the model checker. The experiments
lead to the development of arguments which we use to con-
vince ourselves, and others, that our solution is “correct”.

Figure 3. Six applications in four adjacent
cells

Consider the arrangement of applications shown in Fig-
ure 3. This is an abstraction from the illustrative example
used in the previous Section. This time we have six applica-
tions A, each trying to avoid the others. Each has a goal to
be in a quadrant on its own. Clearly this cannot be achieved
since there are only four quadrants. However, when this
conjecture was given to a model checker [14], it quickly
arrived at a contradiction. In fact, it found that the above
arrangement of applications was such that each believed
its goals were satisfied. The reason is because of the way

that applications only come to know of the co-occupancy of
cells by messages. While these messages are in transit, it
is possible that some applications (maybe even all applica-
tions) believe they have achieved their goals, when in fact
that situation is just about to change. Formulation of an
experiment of this sort, for a model checker, confirms our
conjecture that behaviour is clearly expressed in terms of
goals. A common form of progress property to check with
a model checker is of the form always, eventually G which
is a temporal way of saying that, no matter what state we
are in, eventually we will be in a state when G is satisfied.
But, of course, that doesn’t mean it will remain true.

Experiments of this sort notwithstanding, there are lim-
its to how far we can achieve the insight we need, using just
the kind of experimentation which model checkers support,
especially when behaviour is emergent, rather than being
the direct consequence of the composition of the behaviours
of its constituents. It is not straightforward to observe this
emergent behaviour from the kinds of experiments which
model checkers encourage. Here there is a role for ani-
mation of the type which allows clear visualisation of the
emergent behaviour. The LTSA model checker [19] now
supports some very powerful visual animation, so this may
well be a trend in model checking. What we have used to
perform the experiments reported here is a rather more ad
hoc graphical animation package.

Of course, the example we have chosen lends itself to
that sort of visualisation. We can place a graphical rendi-
tion of each application on a screen and see them moving,
settling, being agitated etc. It is not immediately obvious
how one would visualise the more realistic enterprise ap-
plications, although [23] is full of interesting ideas in this
direction.

Previously, we have looked at modelling systems from
a component-based point-of-view [11, 12, 14], without
concerning ourselves with the distinction between syn-
chronous and asynchronous behaviour. Enterprise-scale
systems however require this. The formal modelling of
asynchronous and distributed behaviour in the context of
evolutionary change is particularly challenging [21]. It
leads to emergent properties, which are difficult to predict
without experimental evidence [17]. Once seen, however,
these properties can be cast in the form of striving towards
local goals and the system behaviour can be seen as the
amalgamation of these local behaviours. For us, animation
has formed the basis of the usual process of conjectures and
refutations which lead to a detailed understanding and an
ability to reason formally about complex behaviour.

6. Conclusions

In this short paper we have shown how the behaviour of
individual components in a complex distributed set of ap-

plications can be described in terms of the set of goals each
is to achieve. We gave an example of a simple distributed
system with asynchronous behaviour and discussed how its
behaviour can be described and reasoned about, formalising
what we believe to be contemporary engineering practice.
In particular, we demonstrated that this behaviour can be
formulated in terms of local goals. We argued that exper-
imental support for reasoning, including animation, is par-
ticularly appropriate and practical in these circumstances,
because the properties which we reason about are emer-
gent rather than compositional. We showed that our simple
example incorporates many of the properties of large-scale
Enterprise Application Integration problems.

References

[1] Martin Bichler, Arie Segev and J. Leon Zhao. Component-
based E-Commerce: Assessment of Current Practices and
Future Directions. ACM SIGMOD Record 27(4): 7-14, 1998

[2] Ken Burgett. JMS and EJBs: The inbound message conun-
drum. http://www7h.boulder.ibm.com/wsdd/library/, 2001

[3] Antonion Carzaniga, David S. Rosenblum and Alexander
L. Wolf. Design and evaluation of a wide-area event noti-
fication service. ACM Transactions on Computer Systems
(TOCS), Volume 19, Issue 3, 2001

[4] L. Chung and N. Subramanian, Architecture-Based Seman-
tic Evolution: A Study of Remotely Controlled Embedded
Systems. Proc., IEEE Int. Conf. on Software Maintenance
(ICsM*01), 2001

[5] E.M. Clarke, Orna Grumberg and Doron Peled. Model
Checking, The MIT Press, 2000

[6] Darach Ennis. CORBA and XML Integration in Enterprise
Systems. IONA Technologies Inc., 2000

[7] Faramarz Farhoodi and Peter Fingar. Developing Enterprise
Systems with Intelligent Agent Technology . Distributed
Object Computing, Object Management Group, 1997

[8] Peter Fingar, Harsha Kumar and Tarun Sharma. Enterprise
E-Commerce. Meghan-Kiffer Press; ISBN: 0929652118; 1st
edition, 2000

[9] Hassan Gomaa, Daniel A. Menasc, Michael E. Shin.
Reusable component interconnection patterns for distributed
software architectures . Proceedings of Symposium on Soft-
ware Reusability (SSR 01), ACM Software Engineering
Notes, Volume 26, No 3, 2001

[10] Peter Henderson. Laws for Dynamic Systems. Proceedings
of International Conference on Software Reuse (ICSR 98),
p.330-336, IEEE Computer Society Press, 1998

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Peter Henderson and Robert John Walters. Modelling
Component-based Systems as an aid to Design Validation.
14th IEEE International Conference on Automated Software
Engineering (ASE) p.303-6., 1999

Peter Henderson and Robert John Walters. Behavioural
Analysis of Component-Based Systems. Information and
Software Technology, 43 p.161-169. 2001

Peter Henderson. Asset Mapping - developing inter-
enterprise solutions from legacy components. in Sys-
tems Engineering for Business Process Change - New
Directions, Springer-Verlag UK, pp 1-12, 2002 see
http://www.ecs.soton.ac.uk/ ph/papers

Peter Henderson. Modelling Architectures for Dy-
namic Systems. in Programming Methodology,
Edited by A. Mclver, C. Morgan, Springer Ver-
lag Monographs in Computer Science, 2002, see

http://www.ecs.soton.ac.uk/"ph/papers

Gerard J Holtzman. The model checker SPIN. IEEE Trans-
actions on Software Engineering, Vol 23, No 5, 1997

Jens H. Jahnke. Engineering component-based net-centric
systems for embedded applications. Proceedings of the
8th European Software Engineering Conference, ACM Soft-
ware Engineering Notes, Volume 26, Issue 5, 2001

Havard D. Jorgensen and Steinar Carlsen. Emergent Work-
flow: Planning and Performance of Process Instances.
Workflow Management ’99, 1999, see http://www.wi.uni-
muenster.de/is/Tagung/Workflow99/

Jeff Magee and Jeff Kramer. Concurrency : State Models &
Java Programs. John Wiley and Sons Ltd (1999)

Jeff Magee, Nat Pryce, Dimitra Giannakopoulou and
Jeff Kramer. Graphical Animation of Behaviour
Models. see http://www.doc.ic.ac.uk/“jnm/book/Itsa-
v2/animation_paper.pdf, 2000

Shin Nakajima and Tetsuo Tamai. Behavioural analysis
of the enterprise JavaBeans component architecture. Pro-
ceedings of the 8th international SPIN workshop on Model
checking of software, 2001

Gian Pietro Picco, Gruia-Catalin Roman and Peter J. Mc-
Cann. Reasoning about code mobility with mobile UNITY.
ACM Transactions on Software Engineering and Methodol-
ogy, Volume 10, No 3, (2001)

R. Sesseler. Building agents for service provisioning out of
components. Proceedings of the Fifth International Confer-
ence on Autonomous Agents, 2001

Robert Spence. Information Visualization. Addison Wesley,
2001

See http://www.ecs.soton.ac.uk/ph/reasoning

