
A comparison of some negotiation algorithms

Peter Henderson, Stephen Crouch, Robert J Walters and Qinglai Ni

fph,stc,rjw1,qng@ecs.soton.ac.uk

Department of Electronics and Computer Science

University of Southampton, SO17 1BJ, UK

tel: +44 23 8059 3440 fax: +44 23 8059 3045

June 2002

Abstract

This paper provides some results and analysis of several negotiation
algorithms. We have used a tournament-based approach to evaluation
and applied this within a community of Buyers and Sellers in a simu-
lated car hire scenario. An automated negotiation infrastructure has
been developed and the various negotiation algorithms made to com-
pete against each other. In a single tournament, each algorithm was
used as both a Buyer-negotiator and a Seller-negotiator. Each negoti-
ating algorithm accommodates the parameters for negotiation as a set
of desirable goals, represented as examples of product speci�cations.
It was the task of each negotiating algorithm to get the best deal pos-
sible from every one of their opposites (i.e. Buyer versus Seller) in the
sense of being close to the examples they were given as goals. One al-
gorithm proved to be superior to the others against which it was made
to compete.

Keywords: e-commerce, negotiation, distributed systems, enterprise
application integration

1 Introduction

A signi�cant problem in distributed e-commerce applications is the choice
of algorithm used to carry out automated negotiation on behalf of a client
[Bur02, Bich01, Cra97, Far97, Fin00, Hen02]. Even very simple algorithms
can have behaviour which is acceptable in a restricted scenario but which
might be unpredictable in a more liberal environment. In order to gain some
con�dence in algorithms we were planning to deploy, we decided to establish
a simulation environment in which they could be evaluated.

In 1984 Robert Axelrod published The Evolution of Cooperation [Axel84],
a book that amongst many other things discussed the results of two tourna-
ments that attempted to �nd the best automated algorithm at playing the

1

iterated Prisoner's Dilemma, a deceptively simple game with its origins in
economic game theory. In this game, competitors are required either to co-
operate or defect (i.e. not co-operate) in a series of rounds. Each participant
can observe the behaviour of its opponent and choose to collaborate or de-
fect on the next round according to how it feels the opponent may perform.
The rewards are highest for a defector whose opponent collaborates. But
they are lowest if both defect. The optimal long-run strategy is for both to
collaborate, where the rewards are not as high as they are for a lone defector
but where they are much higher than if both defect.

One of the many interesting aspects of the work was that the algorithm
that emerged victorious against all the others was incredibly simple. Tit-
For-Tat simply cooperated with its opponent on the �rst round, and from
then on just reciprocated whatever its opponent did on the previous round.
Surprisingly, this algorithm accumulated more rewards than the others, al-
though it would never actually win a complete game. It won because it
encouraged high scoring games with its opponents, and although it was al-
ways either drawn with or beaten, it subsequently attained the highest score
overall (see [Axel97]).

Three characteristics formed the basis for its success: it never was the
�rst to defect, it didn't hold grudges, but it was retaliatory. Cooperate
with it, and you both do well. Defect against it and it does the same. We
wondered if a similar result might hold where participants were engaged in
negotiation. We have chosen to build a tournament which pits algorithms
against each other which, although simple, are of the sort which are actually
used in commercial scenarios.

At an abstract level, similarities may be identi�ed between the tour-
nament presented in this paper and the tournament conducted by Axelrod.
However, there are some very notable di�erences, since this experiment deals
with interaction on a far more detailed, and therefore semantically rich, level.

Firstly, the scoring system has to be more complex. In negotiation, often
there is no absolute notion of cooperation and defection as in the Prisoner's
Dilemma. For example, what one Seller views as defection by a Buyer is
not always what another Seller would view as defection. The existence of
this perceptual grey area means a more detailed scoring system to ensure
consistency across scores was required.

Secondly, the algorithms in this tournament are each given a set of ne-
gotiation goals, in the form of desired product speci�cations. Interpreting
and reasoning about these goals in some way is an issue that has to be dealt
with by the algorithms.

Thirdly, in this tournament, all algorithms face each other, including
instances of themselves, as Buyers versus Sellers.

Previously we have looked at architectures for e-commerce systems [Hen98,
HW01, Hen02] and been interested in how federations of applications co-
operate, particularly when new applications can join the federation at any
time. Networks of e-commerce negotiation algorithms have exactly this

2

property and have become a test-case for us.

2 The Experiment

2.1 The Car Hire Scenario

The chosen scenario for the negotiation tournament was car hire. If we
consider a single Buyer and Seller pair in the tournament, a Buyer's objective
is to secure the best deal possible for hiring a car, with respect to a given set
of car speci�cations. The Buyer has a set of examples of deals they would
accept. Each entry in this set consists of four attribute name and value pairs
for the following attributes

Days the length of time we wish to hire the car

Price the price we would like to pay

Features some linear, quanti�ed grade of features (e.g. air con-
ditioning, electric windows), higher number represents more
features

Class the desired size of the car, higher number represents larger
car

A set of examples consists of many car speci�cations, each representing an
acceptable outcome of negotiation. The Seller also has a set of examples,
representing the cars they wish to hire out, reecting their stock constraints.

Specifying negotiation criteria as examples provides an abstract yet ex-
ible method of stating a negotiator's desires, although the potential exists
for ambiguity between these example criteria. There is not always a clear
correlation between these examples, and the process of interpreting these ex-
amples in the context of the negotiation process is a task of the negotiator.

Days Price Features Class
9 250 4 2
6 150 2 2

Table 1: An set of examples to be used as Buyer goals

Consider the examples in Table 1. If these are examples used by a Buyer,
then we see that they are after a particular class of car and want about 9 days
of hire. They are prepared to compromise on days (and features) but only
for a signi�cant saving in cost. If the Buyer using these examples receives
an o�er which is close to one of these examples, they would be inclined to
accept it. If they have to make a counter o�er, they will construct one using
an algorithm which takes into account o�ers they have received and which
attempts to stay close to these examples. It is algorithms of this sort (for
Sellers as well as Buyers) that we wish to evaluate.

3

2.2 Negotiation behaviour

The negotiation process between a Buyer and Seller consists of a series of
o�ers and counter-o�ers being made until an agreement is reached, with a
single o�er consisting of Days, Price, Features and Class attribute and value
pairs. Of course, during negotiation it may prove impossible for a Buyer
to acquire exactly what they want from the Seller, or vice versa, so each
negotiator must be able to compromise on certain attributes in order for
negotiation to be successful. However, it is obvious that it is not in the best
interests of each negotiator to over-compromise, simply because this could
mean they secure a deal which does not match with their desired criteria.
The manner and degree in which a negotiator deviates from those criteria
is dictated by the negotiation strategy they employ.

Figure 1 shows the messages which will ow between two negotiators,
one con�gured as a Buyer and one as a Seller. The supervisor will tell one or
other (we will always use the Buyer) to start. O�ers will alternate according
to the following behaviour:

on receive start from supervisor{

compute initial offer;

send offer to partner;

}

on receive offer from partner{

evaluate offer;

if(offer is acceptable){

send accept to partner;

exit;

}else{

compute new offer;

send offer to partner;

}

}

on receive accept from partner{exit;}

on receive quit from supervisor{exit;}

Eventually either one of the negotiators accepts or the supervisor tells
both to quit. Each negotiator is initialised with this behaviour, and is told
that it is buying or selling against a set of examples with which it has been
furnished. Each algorithm will take a di�erent approach to implementing
one or other of the basic actions:

compute initial offer

evaluate offer

compute new offer

4

negotiator negotiator

start, quit quit

offer, accept

offer, accept

Figure 1: The negotiation scenario

Before we go into further detail of the actual algorithms which we use,
we need to say a little more about the negotiation environment.

2.3 The Negotiation Environment

A negotiation environment was developed within which multiple automated
negotiators could compete. The environment allowed for a con�gurable
number of Buyer and Seller negotiators to be instantiated for a single tour-
nament, each with their own algorithm for conducting negotiation, and each
with a set of either Buyer or Seller examples. These examples provide a set
of acceptable goals for each negotiator.

In a typical tournament, a Buyer's target is to secure one car from each
Seller, whilst the Seller's target is to sell one car to each Buyer. If we adopt a
global view of all negotiations, we essentially observe a series of pair-wise ne-
gotiations between each possible Buyer/Seller/algorithm permutation, with
successful negotiations resulting in the exchange of a car from a Seller to
a Buyer. In other words, after a tournament is complete, every Buyer will
have negotiated once with every Seller, and vice-versa, and every algorithm
in a tournament will be represented as both a Buyer and Seller.

In a typical tournament, although all negotiations between Buyers and
Sellers are handled concurrently, the actions of each Buyer do not a�ect
other Buyers, and the same is true for Sellers. This is because each Seller
potentially has one car to hire out to each Buyer. However, if we give each
Seller less cars than there are Buyers, the actions of a Buyer have possible
rami�cations for other Buyers, since those which typically take more time
in reaching agreement may not secure a car. This makes it possible for us
to run a tournament with the added element of competition for resources,
where an algorithm's eÆciency contributes to success. This has not been
done in the experiments reported here.

To measure the success of a negotiator following a tournament, a simple
scoring system was devised and applied to each outcome of each negotiation
for a negotiator. Only two possible outcomes of negotiation between a Buyer
and a Seller exist:

5

Accept After a negotiator has received an o�er, they can choose
to accept it. However, if instead they make a counter-o�er,
that received o�er can no longer be accepted (unless the
same o�er is made again). For each acceptance a nego-
tiator manages to secure with another, either by accepting
an o�er themselves, or having one of their o�ers accepted,
a measure of 'distance' between that o�er and their given
set of examples provides us with a base score. Therefore,
accepting an o�er (or having it accepted) that perfectly
matches one of their examples will get them the best score
possible. An acceptance facilitates one car being passed
from the Seller to the Buyer as a resource.

Quit Determined and imposed by the negotiation environment,
if a Buyer-Seller pair is still negotiating after a given num-
ber of rounds, their negotiations are terminated and they
each receive a score of zero. In addition, the Seller does not
sell a car, and the Buyer does not receive one. This out-
come represents the penalty for not reaching an agreement,
and therefore provides an incentive for each algorithm to
reach agreement quickly. However, they are not told prior
to the tournament how many rounds they are not allowed to
exceed. Similar in motivation to the Axelrod tournament,
algorithms cannot therefore attempt to do better than their
negotiation opponents by using their knowledge of the max-
imum number of rounds to try to take advantage.

It is in the best interests of a negotiator's algorithm to reach agreement
with their opposites under any circumstances, and to do so quickly. It is
intentional that securing a bad deal quickly and receiving a low score is a
better outcome than not securing a deal and receiving a zero score. Another
approach would have been to o�er algorithms the choice of quitting negotia-
tions themselves instead of making another o�er, and many scoring methods
could have been employed. However, it was decided that the main objective
of the tournament is to ascertain how well each algorithm can negotiate
with each other, not how well strategically they can quit negotiations. An
algorithm that knows when to quit against another, perhaps to attain the
best payo�, does not tell us very much about how e�ectively it negotiates.
However, such an algorithm can be simulated. It would simply repeat its
�nal (rejected) o�er until such time as the supervisor intervened.

The algorithm used for calculating the distance between an accepted o�er
and a set of examples was straightforward. For each attribute in an o�er, a
minimum and a maximum allowed value are imposed. No penalty is awarded
for going outside of these ranges, but any o�ending attributes are constrained
within those ranges. These range values are accessible by an algorithm,
and this mechanism therefore provides a sanity check against o�ers that

6

may inhibit the operation of the system, but more importantly these range
values provide a scope for scoring algorithms. The scoring function takes an
accepted o�er and an example and returns an inverse measure of 'distance'
between the two, as a value between 0 and 1. i.e. the higher the score, the
closer the o�er to the given example.

This function is applied to all examples and the highest score of these
represents the negotiator's overall score for that accepted o�er. To ensure a
more representative spread of results, and to reduce the e�ect of anomalies,
the tournament was executed many times and the results averaged. Follow-
ing this process, each negotiator is given an average sub-total that represents
the negotiator's average score over all executions of the tournament. This
sub-total is then multiplied by the factor of resources the negotiator was able
to purchase or sell, depending on whether they were a Buyer or a Seller, to
determine a �nal score.

2.4 The Examples

In order to better understand how and to what extent the examples con-
tribute to the results, two very simple sets were used, each with di�erent
qualities. Set one was as follows:

Days Price Features Class
9 200 4 2
8 190 3 2

Table 2: Buyer example set 1

Days Price Features Class
7 300 3 2
4 150 2 1

Table 3: Seller example set 1

Essentially, for the Buyer and the Seller, each of their examples is roughly
consistent with each other, and appears quite rational. Comparing the
Seller's examples with the Buyer's examples shows the Buyer would take
one less day and a slightly less featured car for $10 less, whilst the Seller
would like to hire out a less featured, smaller car for half the price.

Set two was as follows:
These examples were designed to be less consistent and more diÆcult to

reason about. If we consider the Buyer's second example, the Buyer wishes
to hire a big, low features car for 8 days at 140, yet would be willing to
pay 60 more for two extra days and a slightly better featured, larger car.
However, the Seller's second example is 170 for a small car with low features

7

Days Price Features Class
10 200 3 4
8 140 2 3

Table 4: Buyer example set 2

Days Price Features Class
8 260 2 2
6 170 2 1

Table 5: Seller example set 2

for 6 days. His �rst however, is a great deal more for only two extra days
and a moderately sized car. It should be noted that the �rst set of examples
appears to provide a little more room for 'negotiation manoeuvring' than
the second set. In other words, the Buyer and Seller negotiation criteria are
further apart in the �rst set than the second set. Giving the algorithms a
smaller bargaining arena gives us the opportunity to observe how well they
perform under such tight circumstances.

Although we have run experiments with larger example sets, the results
are essentially as those reported here. The smaller example sets make clearer
what is going on.

3 The Algorithms

Seven algorithms were developed and submitted to compete in the tourna-
ment. Each algorithm had to address the following three questions:

What constitutes an initial o�er if the algorithm is a Buyer?

Under what circumstances is an o�er accepted?

If the most recently received o�er is not accepted, how is a
counter-o�er formulated?

In these terms, let us describe the seven algorithms which we compared.
The �rst two algorithms, Random and JustAccept, were trivial. These

algorithms were included purely for comparison with other algorithms. Ob-
viously, any algorithm should always do better than Random or JustAccept,
so these two algorithms provide a 'comparison bar' for the lowest level of
performance. Interestingly, we discovered that some algorithms were not
able to beat either of these trivial choices.

3.1 Random

Random simply produced random o�ers, by picking a random number be-
tween the minimum and maximum ranges for each attribute. Each time an

8

o�er was received, random would have a 10% chance of accepting it.

compute initial o�er choose arbitrary values for each attribute
within permitted ranges

evaluate o�er accept probabilistically (for these experiments,
with 10% chance)

compute new o�er choose arbitrary values for each attribute
within permitted ranges

3.2 JustAccept

JustAccept simply accepted the �rst o�er it received, and if it was a Buyer,
its �rst o�er was simply its �rst example.

compute initial o�er choose �rst example

evaluate o�er always accept

compute new o�er never happens

3.3 AgreeRandomAttribute

This algorithm only attempts to negotiate with respect to its �rst example,
which forms its �rst o�er if it is a Buyer. After receiving an o�er, it uses
its �rst example as an o�er template. Into this o�er template it randomly
substitutes an attribute value from the opponent's o�er. This o�er template
forms the new o�er. It will accept an o�er if it only has one attribute
di�erent from any one of its examples.

compute initial o�er choose �rst example

evaluate o�er accept if agreement in all but at most one at-
tribute

compute new o�er alter one attribute to equal value received
from opponent

3.4 AgreeProgressive

AgreeProgressive was a more accommodating, and more sophisticated, ver-
sion of AgreeRandomAttribute. It utilises a matrix that acts as a mask for
merging an example and an o�er to form a new o�er. The merging process
is simple: the best matching example to the last received o�er is used as the
template, and the matrix decides which attribute values in the template to
substitute. In the �rst four rounds, the algorithm will accept an o�er with
only one di�erent attribute to one of its examples. Otherwise, on a per-
round basis, it cycles through each attribute, substituting the appropriate
attribute in the closest matching example for the corresponding attribute
in the last received o�er. The closest matching example is the one with the
least number of di�erent attributes from the last received o�er.

9

In the next 6 rounds, the number of attributes to substitute is increased
to two. Every possible permutation of two attributes is attempted. A re-
ceived o�er is accepted if it di�ers from one of its examples by only two
attributes.

In rounds 11 to 14, all possible permutations of three attributes are
attempted, and o�ers are accepted if di�erent from an example by only three
attributes. When the algorithm reaches round 15, it will accept whatever
o�er is sent by the opponent.

compute initial o�er choose �rst example

evaluate o�er accept if agreement in all but at most one (two,
three, ...) attributes

compute new o�er alter one (two, three, ...) attribute to
equal value in example nearest to o�er received from op-
ponent

3.5 Tit-For-Tat

This algorithm represents a simple interpretation of Axelrod's Tit-For-Tat
in the context of negotiation. It replicates on an attribute-attribute basis
the inverse behaviour of the opponent. This behaviour is determined by
simply comparing the opponent's most recent o�er with the one received
before that. e.g. if the opponent (as a Seller) deducts $10 o� the price,
the Buyer as Tit-For-Tat will add $10. Until Tit-For-Tat has two o�ers to
compare, it initially cooperates by adding 10% onto its previous o�er.

compute initial o�er choose �rst example

evaluate o�er accept if agreement within a margin

compute new o�er reect opponent's behaviour by moving
on same attribute: if opponent closes gap, then close gap.
If opponent opens gap, then open gap.

3.6 Retreat

This algorithm begins by o�ering the �rst example. As negotiation pro-
gresses, it then proceeds to 'back away' from this example in the opposite
direction of the opponent's last received o�er. If the opponent's o�er is close
to this example, it accepts the o�er. Very similar to Tit-for-Tat, but more
confrontational.

compute initial o�er choose �rst example

evaluate o�er accept if agreement within a margin

compute new o�er reect opponents behaviour by moving on
same attribute. Regardless of whether opponent opens or
closes gap, open gap by similar amount.

10

Negotiator Algorithm Resource Used Score Final Score
Buyer4 AgreeProgressive 1 0.937 0.937
Buyer5 TitForTat-Pure 1 0.901 0.901
Buyer1 TestAlgorithm 1 0.898 0.898
Buyer7 JustAccept 1 0.883 0.883
Buyer2 Random 0.986 0.799 0.788
Buyer6 Retreat 0.857 0.786 0.674
Buyer3 AgreeRandomOne 0.7 0.673 0.471

Table 6: Buyers using the �rst example set

Negotiator Algorithm Resource Used Score Final Score
Seller4 AgreeProgressive 1 0.948 0.948
Seller6 Retreat 0.993 0.920 0.913
Seller7 JustAccept 1 0.860 0.861
Seller2 Random 0.993 0.781 0.776
Seller3 AgreeRandomOne 0.843 0.819 0.691
Seller5 TitForTat-Pure 0.857 0.794 0.680
Seller1 TestAlgorithm 0.857 0.737 0.631

Table 7: Sellers using the �rst example set

3.7 TestAlgorithm

This algorithm employed a numerical method to dictate its o�ers, and to
determine whether to accept an opponent's o�er. This is an attempt to
emulate the kind of rational algorithm which is often deployed in practice,
where some quantitative knowledge of the domain is used to re�ne its deci-
sion making.

compute initial o�er choose �rst example

evaluate o�er accept if agreement within a margin

compute new o�er numerical method of moving within re-
gion of disagreement with opponent

4 Results

The results with the �rst example set are given in tables 6 and 7. The results
with the second example set are given in tables 8 and 9. The results are not
entirely as we would have expected. We did not predicxt that AgreePro-
gressive would do as well as both Buyer and Seller. Nor did we expect the
rational TestAlgorithm to do so badly as a Seller.

Some algorithms never reach agreement, even though doing so entails
such a severe penalty. The reasons are threefold: �rstly, the algorithms do

11

Negotiator Algorithm Resource Used Score Final Score
Buyer4 AgreeProgressive 1 0.860 0.860
Buyer7 JustAccept 1 0.823 0.823
Buyer1 TestAlgorithm 1 0.816 0.816
Buyer2 Random 0.993 0.748 0.742
Buyer5 TitForTat-Pure 0.843 0.757 0.638
Buyer6 Retreat 0.571 0.511 0.292
Buyer3 AgreeRandomOne 0.457 0.441 0.202

Table 8: Buyers using the second example set

Negotiator Algorithm Resource Used Score Final Score
Seller4 AgreeProgressive 1 0.923 0.923
Seller7 JustAccept 1 0.732 0.732
Seller2 Random 0.986 0.692 0.682
Seller3 AgreeRandomOne 0.836 0.795 0.664
Seller6 Retreat 0.757 0.699 0.529
Seller5 TitForTat-Pure 0.714 0.618 0.441
Seller1 TestAlgorithm 0.571 0.472 0.270

Table 9: Sellers using the second example set

not know how many rounds of negotiation they are allowed. If they did,
they could simply accept the last o�er made by their opponents before the
cut-o�. Secondly, each negotiator faces the simple dilemma of whether to
accept the other negotiator's latest o�er, or to make another o�er. Because
they have no global view of how negotiations will turn out, they cannot know
at any point during negotiations whether the most recent o�er received is
the best they will ever get. Thirdly, the negotiation behaviour that emerges
as a result of the inherent nature of each algorithm, when faced with the
other, may guarantee they never reach agreement. Retreat, for example,
could never reach agreement with AgreeRandomAttribute if each of their
examples were suÆciently far apart.

AgreeProgressive was more successful than we expected. The behaviour
reported here was repeated in other experiments, including for larger exam-
ple sets. Most importantly, it is the only algorithm that will always reach
agreement as long as the negotiation cut-o� is at least 15 rounds (for 4 at-
tributes). At round 15 it eventually agrees with whatever the opponent is
then o�ering. As long as this is the case, this ensures that the algorithm is
never penalised for not reaching agreement early enough. Secondly, the na-
ture of the algorithm means that it gradually alters its negotiation strategy
from initially very stubborn (only agreeing to one attribute), to very concil-
iatory (agreeing with all four attributes, and therefore accepting the o�er).
Every possible permutation of o�er agreement within these two extremes is

12

presented to the opponent, and therefore the likelihood that an o�er will be
accepted increases with every iteration. Thirdly, because the algorithm is
initially very stubborn, this allows the algorithm to take advantage of any
concessions that may be made by the opponent in the earlier stages of nego-
tiation, before it begins to compromise on a greater scale. This can be seen
with TestAlgorithm. Unlike algorithms such as Retreat and TestAlgorithm,
AgreeProgressive does not waste time making 'blu�' o�ers. It immediately
attempts to �nd a formula for mutual agreement. Tournament cut-o� per-
mitting, this will always be the case.

The relative success of JustAccept is a consequence of the nature of the
other algorithms and the structure of the tournament. JustAccept does well
because it always reaches a deal and because the opponents are behaving
reasonably in that their o�ers are realistic. When JustAccept is acting as
a Buyer, this is a close approximation to real life, where goods on sale are
o�ered at a fair price and Buyers just accept that. It doesn't do quite as
well as a Seller, but even there its behaviour is reasonable because Buyers
open with reasonable bids. This algorithm is obviously open to exploita-
tion, but the tournament has been structured to prevent this. Nonetheless,
JustAccept has performed its role as a benchmark for callibrating the per-
formance of others. The only algorithm to perform consistently better than
JustAccept was AgreeProgressive.

5 Conclusions

We have described a series of experiments which have allowed us to com-
pare various negotiating algorithms. Following Axelrod we have taken the
view that an algorithm is best if it does well against a range of opponents.
Although negotiation is a more complex behaviour to describe (and hence
to measure) than simple collaboration, we have arrived at a similar result to
Axelrod. One algorithm has performed better than expected, consistently
doing well against a range of opponents. The algorithm is not the simplest
in our set, nor is it the one we expected to be best. These are observations
we have explained, to some extent. Further experiments which we plan, with
these algorithms and with new algorithms, will lead, we hope to a greater
understanding of negotiated agreement in an e-commerce context.

References

[Axel84] Axelrod, Robert. The evolution of co-operation. New York: Basic
Books

[Axel97] Axelrod, Robert. The complexity of co-operation - Agent-Based

Models of Competition and Collaboration. New York: Basic Books

13

[Bur02] Burg, Bernard. Agents in the world of active web

services. to be published in Springer LNCS, see
http://www.hpl.hp.com/org/stl/maas/pubs.html

[Bich01] Bichler, Martin, Arie Segev and J. Leon Zhao. Component-based

E-Commerce: Assessment of Current Practices and Future Di-

rections. International Workshop on Component-based Electronic
Commerce (publication details to be veri�ed)

[Bin99] Binmore, Ken and Nir Vulkan Applying Game The-

ory to Automated Negotiation. Netonomics, Jan 99, see
www.worcester.ox.ac.uk/fellows/vulkan

[Cra97] Cranor, Lorrie F and Paul Resnick. Protocols for Automated Ne-

gotiations with Buyer Anonymity and Seller Reputations. Tel-
lecommunications Policy Research Conference (TPRC 97), see
www.si.umich.edu/~presnick

[Far97] Farhoodi, Faramarz and Peter Fingar. Developing Enterprise Sys-
tems with Intelligent Agent Technology . Distributed Object Com-
puting, Object Management Group (1997)

[Fin00] Fingar, Peter, Harsha Kumar, Tarun Sharma. Enterprise E-

Commerce. Meghan-Ki�er Press; ISBN: 0929652118; 1st edition
(January 2000)

[Fog00] Fogel, David B. Applying Fogel and Burgin's Competitive Goal-

Seeking through Evolutionary Programming to Coordination Trust

and Bargaining Games. Proceedings 0f 2000 Congress on Evolu-
tionary Computation (CEC 2000)

[Hen98] Henderson, Peter. Laws for Dynamic Systems. Proceedings of
International Conference on Software Reuse (ICSR 98), p.330-336,
IEEE Computer Society Press, 1998

[HW01] Henderson, Peter and Robert John Walters. Behavioural Analysis
of Component-Based Systems. Information and Software Technol-
ogy, 43 p.161-169. 2001

[Hen02] Henderson, Peter. Asset Mapping - developing inter-enterprise so-

lutions from legacy components. in Systems Engineering for Busi-
ness Process Change - New Directions, Springer-Verlag UK, pp
1-12, (2002) see http://www.ecs.soton.ac.uk/~ph/papers

[Sess01] Sesseler, R. Building agents for service provisioning out of com-

ponents. Proceedings of the �fth international conference on Au-
tonomous agents (2001)

14

