
- 1

A tool for evaluation of the Software Development Process
Peter Henderson

(P.Henderson@ecs.soton.ac.uk)
Declarative Systems and Software

Engineering Group
Department of Electronics and

Computer Science
University of Southampton

Southampton, UK.
SO17 1BJ

Robert Walters
(R.J.Walters@ecs.soton.ac.uk)

Declarative Systems and Software
Engineering Group

Department of Electronics and
Computer Science

University of Southampton
Southampton, UK.

SO17 1BJ

Introduction
There is continuing pressure on Software
Developers to improve both the quality and
speed of development of software. One
response is to review and to improve the
software development process. There are
accepted schemes [4, 7] which attempt to
classify the software development process (not
the software produced) according a measure of
its "quality" or "maturity". However, few
software developers have high ratings on these
scales.

One reason is that, despite their modest ratings,
software developers have a considerable
investment in their existing development
process and the infrastructure supporting it.
They could not adopt an "ideal" process even if
such a process could be identified and defined.
Instead, they need to adapt and enhance their
existing processes. To achieve the highest
ratings, developers need to measure and
manage their processes.

We describe RolEnact which attempts to
address the requirements for a tool to support
the simulation, evaluation and improvement of
software development processes.

Motivation
Most schemes and tools directed at helping
developers to monitor and improve their
processes have a notion of how the process
operates which is essentially fixed. To make
these systems work the developers may need to
collect data which is not readily available and
be prepared to accept analysis results which
require further interpretation.

For example, consider an experiment carried
out by ICL to improve cost estimation of
software projects [1]. The experiment looked
at a novel method for monitoring and

controlling the progress of a software project.
The results show two typical features of this
type of exercise:

• The figures collected are analysed
manually because either the figures
themselves or the analysis required cannot
be handled by the existing support system.

• The figures show unexpected features. In
this case, although it is unlikely to be true,
the data suggests that almost half of the
work of the project was carried out in the
penultimate month.

The first of these problems is often addressed
by the construction of a custom support tool
which is tailored to the particular situation.
However, once built and implemented, the new
tool can be expected to cause the similar
problems to the one it replaced. "Exceptional"
behaviour may be dealt with by adjustments to
the data to more accurately reflect "what must
have happened" or by explaining away the
analysis results. Neither of these approaches is
really satisfactory.

We believe that a better approach is to modify
the analysis of the model and the model itself
in the light of the observed behaviour. To do
this, we need analysis and simulation tools
which are able to adopt and evolve with
(understanding of) the process under
consideration.

Requirements for an evaluation
tool
The tool must be able to work with an
understanding of the existing process.
Typically this process will be unique to the
developer as it will have evolved over a period
of time.



- 2 -

The tool needs to be easy to understand as
many of the people who will use it will not be
familiar with process modelling.

Once a description of the existing process (or
part of the process) has been captured, the tool
must then be able run simulations of the
process using appropriate data from the real
process.

The tool needs to be able to adapt to the
process under consideration as it develops and
to allow novel views of those processes as well
as providing features to enable analysis and
evaluation of the process.

Description of RolEnact
RolEnact is a collection of tools which support
the development and analysis of "role based"
models [2, 3, 6]. The complete set comprises a
model building/visualising tool together with a
"stepper" and the simulator. RolEnact
describes processes as a collection of
interacting "Roles". Each of these "Roles" can
be thought of as representing the behaviour an
individual (or job) within the process. These
Roles are able to create new instances of Roles
as well as perform internal changes of state and
interactions with other Roles.

The RolEnact Model Generator
For a process model to be useful, it needs to be
accessible to everyone involved in the process.
Our experience suggests even a simple model
description language like that used by
RolEnact represents a significant barrier to
many people. The generator enables a modeller
to build a model without writing code. A
model is constructed using a collection of
dialogue boxes and the modeller works by
making selections from lists wherever possible.
To assist the inexpert modeller further, the
generator is also able to display a graphical
representation of the model as a "RAD-like"
[5] diagram.

The RolEnact Stepper
A completed model may be simulated
manually using the stepper. In a running
simulation, each instance of a "Role" has its
own window which shows its state and a list of
the events it is presently able to perform. The
modeller steps through the model by
successively selecting an event from the lists
of available events in the Roles of the model.
No specialised knowledge is required to
animate a model using the stepper.

Figure 1: RolEnact running a model of a
development project

The RolEnact Simulator
The RolEnact Simulator takes a RolEnact
model and runs it automatically, recording the
results in an Excel workbook. After each
simulation, the results can be examined and
analysed using Excel. We have adopted this
approach to give the modeller both the power
and flexibility of Excel for analysis and an
easy route to integrating the results into
documents and presentations.

The model shown in the figures has been
constructed to examine the effects differing
sub-contracting strategies on the quality and
delivery time of the final project. The Role
"Boss" represents the customer, the
"Developer" role represents the prime
contractor. The "Developer" can either build
(parts of) product itself or place work with one
or more contractors (who may also choose to
sub-contract work). At each stage the work of
each of the Roles can be either "good" or
"bad". The relative numbers of these types of
event is used in an analysis of each run of the
model as a measure of the quality of the
product. The Developer also has the ability
devote effort to attempting to correct problems.

As an example of the type of analysis that
might be performed, if the developer were to
be more inclined to pass work to contractors,
then it seems reasonable to expect that a poor
sub-contractor will have a detrimental effect on
the quality final product. At the same time,
using more contractors might lead to an
improvement because of the extra time and
effort the developer is able to devote to
correcting problems. The number of
interactions between players in the process and
the extent of their interdependence makes it
hard to understand the effect of such changes.
However, a complete understanding is not
required. In this context, the information which



- 3 -

is really needed is: if this developer were to
change their process in this way, what would
the effect be on the quality of the product?
Using the RolEnact Simulator and figures from

the real process, it is possible to predict the
effect of a change in the developer's policy
regarding sub-contracting.

Figure 2: RolEnact Simulator paused whilst running a simulation of the project modelled in
Figure 1.

Conclusion
Today we use huge software systems which
are both highly featured and reliable and it
would be easy, based on the size, reliability
and performance of these systems, to assume
that the problems of building them have been
solved. However, the process for creating
software systems is much less mature than the
products we see and this is evidenced by the
low ratings of most software developers in
evaluations like CMM and SPICE [4, 7].

Software developers have major investments in
their existing processes and support systems
which they cannot afford to abandon so, if they
are to achieve a high rating on these scales,
they need to evaluate and improve their
existing processes. To do this successfully,
they need a new breed of flexible process
modelling and analysis tools.

References
[1] B. Chatters and P. Henderson, “An

Experiment to Improve Cost
Estimation and Project Tracking for
Software and Systems Integration
Projects,” EuroMicro99, Milan, 1999,
pp.

[2] P. Henderson and R.J. Walters,
“Component Based systems as an Aid

to Design Validation,” 14th IEEE
International Conference on
Automated Software Engineering
(ASE99), Cocoa Beach, Florida, 1999,
pp. 303-306.

[3] P. Henderson and R.J. Walters,
“System Design Validation Using
Formal Methods,” Tenth IEEE
International Workshop on Rapid
System Prototyping (RSP99),
Clearwater, Florida, 1999, pp. 10-14.

[4] J. Herbsleb, D. Zubrow, D.
Goldenson, W. Hayes, and M. Paulk,
“Software quality and the Capability
Maturity Model,” Communications of
the Acm, vol. 40, pp. 30-40, 1997.

[5] M.A. Ould, Business Processes -
Modelling and Analysis for Re-
engineering and Improvement: John
Wiley and Sons, 1995.

[6] K.T. Phalp, P. Henderson, G.
Abeysinghe, and R.J. Walters,
“RolEnact - Role Based Enactable
Models of Business Processes,”
Information And Software
Technology, vol. 40, pp. 123-133,
1998.

[7] J.M. Simon, “SPICE: Overview for
software process improvement,”
Journal of Systems Architecture, vol.
42, pp. 633-641, 1996.


