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Abstract. Large scale Open Systems are built from reusable components in such
a way that enhanced system functionality can be deployed, quickly and effec-
tively, simply by plugging in a few new or revised components. At the architec-
tural level, when new variations of a system are being planned by (re)configuring
reusable components, the architecture description can itself become very large
and complex. Consequently, the opportunities for inconsistency abound. This pa-
per describes a method of architecture description that allows a significant amount
of consistency checking to be done throughout the process of developing a sys-
tem architecture description. An architectural design tool is described that sup-
ports consistency checking. This tool is designed to support component reuse,
incremental development and collaborative working, essential for developing the
architecture description of large systems.

1 Introduction

Systems Architecture is that branch of Information System design that determines the
overall structure and behaviour of a system to be built. Typically, an architecture is cap-
tured as an evolving set of diagrams and specifications, put together by a team of System
Architects and iteratively refined over a period of consultation with the customers for
the solution. The extent to which the architecture represents a buildable or procurable
solution depends a great deal on the consistency and completeness of the architecture
description and the extent to which it can be validated prior to commitment to procure.

Validation of the architecture as early as possible in the process of development is
important. This aspect of System Engineering is not well supported by tools. In this
paper we advocate an approach to architecture description that lends itself to validation
throughout architecture development.

Open Systems have modular, or component-based, architectures based on a cat-
alogue of reusable components with publicly maintained interfaces. Devising a new
configuration involves selecting reusable components from the catalogue, devising new
ones or variations of existing ones, and plugging them together according to the ar-
chitecture description. Opportunities for inconsistent reuse of existing components are
particular pitfalls which need to be avoided eventually, but which need, for pragmatic
reasons, to be tolerated during design and development of a complex architecture de-
scription.



The key idea is that the architects define a metamodel that enumerates the types
of entities they are going to use in their description, along with the relationships be-
tween these entities. For example, as in this paper, they might choose to describe their
architecture in terms of components and interfaces.

As part of the metamodel, the architects will also specify constraints which a valid
description must satisfy. Validation of the architecture description comprises checking
the extent to which these constraints are satisfied. We have developed a tool, WAVE, to
support this approach.

2 Background

In Systems Engineering, in particular for software intensive systems, the design of a
solution is normally developed around a system architecture.The description of this
architecture is a shared model around which the architects work to understand the cus-
tomer requirements and how these can be mapped on to programs and databases to
realise a solution.

The field of architecture description is now relatively mature [1–7]. Specific ap-
proaches to architecture description have, in many respects, found their way into stan-
dard representations such as UML [8] and SysML [9], so it is now quite common to find
these notations in use in industrial projects. There are other approaches to architecture
description [10–21] but these are generally ideas that are readily adopted as speciali-
sations of the standard notations. Indeed, the Model Driven Architecture approach to
system development [22] effectively assumes that a notation needs to be open to exten-
sion and specialisation.

The need for architects to share a model, and for this model to evolve, immediately
introduces the realisation that for most of its life the architecture description will be
incomplete and probably inconsistent. Looking for inconsistencies in the architecture
description is the principal means of validating it early in its life [23–25, 11, 26]. The
research reported here builds on those ideas.

In particular, like others, we take an approach to architecture description based on
relational models [10, 23]. We capture the details of an architectural description in UML
or SysML, but support this with a precise specialised metamodel that has been ex-
pressed relationally. This means that we can capture the consistency constraints very
precisely in relational algebra [27, 28] and formally validate the metamodel as we de-
velop the architecture description.

The consequences for the research reported here are that we have a method of cap-
turing an architectural metamodel, of capturing an architecture according to this meta-
model in UML and a means of presenting that architecture for consistency checking
throughout its life. We claim that this method (and our tool) supports component reuse,
incremental development and collaborative working, for which we will give evidence
in a later section. In order to describe the method, we begin with an example of archi-
tecture description based on UML Component diagrams.
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Fig. 1. A consistent structure

3 Components and Interfaces

Large scale Open Systems benefit from having their architecture described using Com-
ponent diagrams in UML. These diagrams use Components to denote units of func-
tionality and they use Interfaces to show how these units are plugged together to form
assemblies with greater functionality. Components often denote quite substantial units
of functionality (such as web servers, database servers etc.). Moreover, in large Open
Systems there will often be dozens or hundreds of these replaceable components of
various sizes and in many versions.

Figure 1 shows a (simplified) Component diagram in which we see that Component
P has nested within it two further components A and B. Strictly speaking, because it
shows nesting, this is actually an example of a UML 2.0 Composite Structure diagram
[8], where that diagram has been specialised to show nesting of Components.

The interfaces in Figure 1 are shown by the ball-and-socket notation. For example
Component A shows that it requires an Interface IB by its use of a socket with that
label. Fortunately, also nested within Component P is a Component B which supplies
such an interface, shown by the ball with that label. Normally, in a UML 2.0 diagram,
this association between requires and supplies would be shown by an arrow from one
to the other. Rather than do that here, since our diagrams are so simple, we have relied
upon the reader’s ability to associate the two Components through their reference to an
Interface by name.

We see that all the components in Figure 1 supply or require interfaces. Normally, a
component will both require and supply many interfaces, not just one of each as shown
in this simple example. We say that the example in Figure 1 is consistent because all of
the interface requirements are satisfied. The fact that Component B requires Interface
IC is satisfied by this being brought to the outside and shown as a required interface on
the parent P. Similarly, that Component P supplies Interface IA is satisfied by the fact
that it contains a nested Component A which is the source of this interface.

In contrast Figure 2 shows an inconsistent Component diagram. This time Compo-
nent Q contains Components A and D which leads to some mismatches. Most obviously,
we see that Component A, in this context, does not have its requirement for Interface IB
satisfied, because there is no sibling that supplies that interface, nor has it been brought
to the outside and made a required interface of the parent Q. We refer to this missing
connection as dangling requires. We say that, within Component Q there is a dangling-
requirement for Interface IB.
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Fig. 2. An inconsistent structure

Moreover Figure 2 shows an example of what we will call a dangling supplies.
This is because Component Q supplies Interface IX but that is not one of the available
interfaces supplied by one of its nested members. Again, note that this is a consistency
constraint which is specialised from the metamodel that we are adopting and this will
be explained later. Further, while we say that Component Q has a dangling-supplies
of Interface IX , we do not consider the unused Interface ID of Component D to be a
problem (again, a decision of the specialised metamodel)

So far, what we have presented is an example of the type of Architecture Description
that we advocate. It is based on a metamodel that we will introduce in a little while.
The metamodel determines what types of entities will be described (here Components
and Interfaces) and the consistency constraints that they must satisfy. In general, the
metamodel will be defined by the Systems Architects for the specific system being
designed and may use quite different entities and/or consistency constraints. We will
discuss other metamodels later but first we will show how this one is formalised.

4 Specialised Metamodels

Consider the way in which components and interfaces are conventionally described in a
design notation such as UML or in a programming language such as Java or Python. A
component will normally supply a number of interfaces and also make use of a number
of interfaces supplied by other components.

Figure 3 shows the entities and relations introduced by this description. It is the
beginning of the metamodel against which we will check our system descriptions. The
rest of the metamodel comprises the consistency constraints among these entities. Of
course, this simple metamodel also needs to be extended with additional entities to be
sufficiently useful in practice and these entities in turn will require further constraints.

We will formalise the constraints that a correct design must obey in terms of the ba-
sic relations shown on the metamodel diagram. We denote the (natural) join operator of
two relations by a dot (as for example in Alloy [29]). It forms the relational composition
of its operands. Thus, for example

contains.requires

denotes a binary relation formed from the composition (join) of two existing binary re-
lations. That is, contains.requires denotes the relationship between Components and
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Interfaces that we would describe as “Component c contains an unnamed Component
that requires Interface i” .

It is worth noting at this point that this focus on the whole-relation, leads to a holistic
approach to the analysis of Systems Architectures, which is something we will return
to in the section on Pragmatics. It is almost always the case that our relations are many-
to-many. The relational algebraic approach affords a way of “reading-off” the diagram
the derived relations that will be constructed as consistency rules in our metamodel.

The way in which one uses relational algebra, as we will illustrate in the next sec-
tion, is to construct predicates and challenge the consistency checker to construct the
set of entities that fail to pass the test.

5 Consistency and Completeness

The Architecture Description technique that we advocate assumes that the System En-
gineer will specify a metamodel and record the design against that metamodel. The
metamodel will comprise entities, relationships and constraints. This section describes
two such metamodels, shown respectively in Figure 3 and Figure 4. We develop con-
sistency constraints that, according to the System Engineer who designed these meta-
models, are among those that need to be satisfied if the Architecture being described is
to be consistent. We also address a notion of completeness.

We will assume that during development of the Architecture Description, interim
models will not be consistent. The consequence for us here is that the constraints will
be specified as sets of inconsistencies. The designer’s eventual objective is to achieve
a design in which these sets of inconsistencies are eliminated. This approach to design
supports both incremental and cooperative working.

5.1 Dangling Requires

As a first example of a consistency rule, let us define the example we discussed in an
earlier section, dangling-requires. Using the relations and entities illustrated in Figure 3
we can construct the relation dr as follows

dr = contains.requires - contains.supplies - requires

Here, in addition to using relation join (composition) denoted by dot, we have used
set difference, denoted by minus. This expression defines a relation dr which relates
Components to Interfaces. The relation contains.requires contains all pairs (c,i) with
the property that c contains a Component that requires i. Similarly contains.supplies
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contains all pairs (c,i) with the property that c contains a Component that supplies i.
Thus the difference of these two relations contains all pairs where c’s requirement for i

is not satisfied internally.
Finally, by then constructing the difference between this set and the relation requires,

we have that dr is the relation between Components c and Interfaces i, where c contains
a nested Component that requires i but where that Interface is neither supplied inter-
nally nor required by the parent. This is exactly what we meant by dangling-requires.

Constructing the relation dr has two benefits. First we have accepted that during
development a design will be inconsistent and have decided to derive at any point in
time a set of inconsistencies that the designer will eventually wish to remove. Second,
by constructing a relation, we have taken a holistic approach, addressing the whole ar-
chitecture description with our analysis rather than just looking at local inconsistencies.

5.2 Dangling Supplies

We described informally, earlier, what we mean by dangling supplies. Formally, in
terms of our metamodel we can specify this as follows

ds = dom(contains)<:supplies - contains.supplies

The operator <: is domain-restrict. The first term in the definition of ds is just the re-
lation supplies restricted to the domain of contains, which is just the relationship
between composite Components and the Interfaces they supply. By constructing the
difference between this relation and contains.supplies we get ds which relates com-
posite Components to Interfaces that they supply but which are not supplied by any of
their children. Precisely what we meant by dangling-supplies when we introduced it
informally, earlier.

5.3 Replacements

As a final example of a consistency constraint imposed by a metamodel on an Architec-
ture, consider the situation when our Architecture is for an Open System, where we have
potentially alternative suppliers of interchangeable Components. A system is Open if



its interfaces are fully defined and available for exploitation, in that alternative suppliers
can produce replacement or enhanced Components that plug into slots vacated by other
components. How can we determine which Components are potential replacements for
others?

Consider

canReplace =
{ (c1, c2) | supplies[c2] <= supplies[c1] and

requires[c1] <= requires[c2]}

As before, this is a binary relation (<= denotes subset and [] denotes relational im-
age). It is the relationship between Components with the property that if (c1, c2) is in
canReplace then c1 can replace c2, wherever it might occur, simply because it supplies
all the Interfaces that c2 must supply and requires only Intefaces supplied in the loca-
tion that c1 would occupy. The way that this computed relation is used in practice is
when (as in Figure 2) there is a mismatch, we can use canReplace to determine possible
candidates to replace D.

This means that we have, in this metamodel, taken a particular view of what we
mean by an Interface. An entity which represents an Interface by name, effectively
encodes in that name both the syntax and semantics of the Interface. This is not unusual
in practice but does leave undeveloped here how unequal, but related Interfaces, are to
be handled in our metamodel. This is beyond the scope of this paper.

5.4 Completeness

In addition to rules for checking consistency of an architecture as it is developing, there
will be many rules that specify completeness of the description. An example of such a
rule for the metamodels used in this paper might be that every Component should have
at least one Interface that it either requires or supplies.

When constructing a constraint for completeness we will work in the same way as
we have for consistency and report incompletenesses during development. For example,
we might report the set of Components for which there are, as yet, no Interfaces either
required or supplied.

In other systems for which we have developed metamodels, the kind of complete-
ness rules we have developed include constraints such as every Component/Requirement
pair should have at least one TestCase (see, for example Figure 4) or the constraint that
every entity should have at least one Documentation fragment attached to it.

Reports generated of architectures in development would then include sections list-
ing incompletenesses alongside those listing inconsistencies. The Architect’s objective
would be, eventually, to eliminate these sections.

6 Pragmatic Issues

The example we have developed in the paper is rather simple. In practice, Architecture
Descriptions of this sort can be very large. They will normally be developed incremen-
tally and collaboratively by a team. They will also be constrained by the fact that they



are building from legacy components and/or devising a modular architecture that com-
prises reusable components. Tools to support this type of development process must be
able to deal with the consequences of these observations.

6.1 Tools

The WAVE tool allows its users to describe Architectures. It will produce documenta-
tion based on these descriptions, including reports on the inconsistencies.

A prototype implementation of WAVE is available at http://ecs.soton.ac.uk/˜ph/WAVE.
It comprises a collection of scripts which transform among representations of the archi-
tecture descriptions and which support the merging of independently developed models.

WAVE also supports the inclusion of specialised metamodels. The prototype as-
sumes that descriptions made according to these models will have an XML represen-
tation. In practice, we have used WAVE as an adjunct to a UML tool (Sparx Systems
Enterprise Architect) from which the architecture description can be dumped as an XMI
file.

This XMI description is first turned into a realtional model, capturing data from the
XML according to the chosen metamodel. The consistency checking is then done by
a script that computes the “inconsistency” relations such as dr, ds and canReplace as
described here. A further script then constructs the documentation of the architecture
including the reports on inconsistencies in that report.

We plan to replace this XML based implementation with one based on a conven-
tional relational database in the near future, in order to inherit the robustness and trans-
actional properties of those systems. The architect will then be able to publish their
incremental description and share it with others via that shared database.

6.2 Collaborative Working, Incremental Development and Component Reuse

The architects work by capturing new parts of the description and then using the tool to
generate interim documentation. The inconsistencies are highlighted. So they continue
to develop, all the while trying to remove inconsistencies they have added.

Collaborative working is supported because the architects can work independently
as follows. Each publishes their models to the others. When running consistency check-
ing, each architect can merge their work with the work of others. The generated interim
documentation contains inconsistencies that are now across the whole architecture. It
will be apparent to each architect which inconsistencies are their responsibilities. They
continue to work on their independent parts, while following this process of incremental
development.

Where the architecture is something being developed around a catalogue of reusable
components (which is the norm these days) then the component descriptions can be held
with the component in such a way that integrating them into a new “build” (i.e. build of
the architecture) is straightforward. Thus plug-and-play at the eventual implementation
stage, that is afforded by reusability, is mirrored at the design stage by having reusable
component descriptions.



7 Conclusions

We contend that architecture description is an important problem for Information Sys-
tems development, especially for large Open Systems with many architects, many en-
gineers and many legacy components.

We have observed that such an architecture description is likely to be incomplete
and inconsistent for much of its life. We have argued that capturing the architecture
description according to a precise specialised metamodel introduces the kind of redun-
dancy in description that allows inconsistencies to be detected early in the life of an
architecture description.

We have given examples of the kinds of metamodels that can be developed. We
have described tools based on UML that allow a pragmatic approach to developing
both metamodels and architecture descriptions that are compliant to those metamodels.
The particular example we have chosen to illustrate the method used Components and
Interfaces, which are particularly appropriate in the context of component reuse. We
have shown how the method lends itself to reuse of component descriptions, as well as
to reuse of components.

In the future, we will refine our methods and tools in particular ways, not least in
integrating the architecture description with its documentation based on narrative struc-
ture [26]. We plan to publish detailed metamodels that we have developed along with
collaborators. We recognise that many of the more complex consistency constraints that
we specify have analogues in graph algorithms and wish to pursue this potentially rich
theme. In particular, it might allow us to investigate the kinds of architectural complex-
ity that Alexander described in the 60s and then deprecated in the 70s [30] or put more
flesh on the bones of interesting new developments such as the Algebra of Systems [25]

The method we have presented is now quite mature and is being applied in practice
by our industrial collaborators. The tool is usable and integrates well with established
tools. We believe that the method and tools together constitute a sound and practical
method of enhancing architecture description.
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