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Abstract 

 
In modern systems data is distributed and 

replicated.  Its ownership is also distributed 
amongst a variety of stakeholders with 
differing requirements and expectations.  A 
consequence is applications inevitably find 
data they need is missing or contains 
contradictions and inconsistencies from time 
to time  leaving them unable to progress within 
their domain.  Techniques such as transactions 
can help but are not enough as they rely on 
being able to impose their own consistency 
rules on data and this isn't always possible.  
What is required is an ability for applications 
to move forward despite the problems in local 
data by applying higher-level reasoning to that 
data.  This paper describes DataWarp, a 
technique which empowers applications to 
make progress in such environments and 
illustrates its use to specify an efficient 
personal Grid workflow scheduler. 

 
 

1. Introduction 
 
In the past when applications operated in 

isolation, each had complete control over the 
data they used and owned.  For modern 
connected systems, this is no longer the case 
and now applications need to use and manage 
data which is distributed and replicated.  
Techniques such as transactions and systems 
of compensations approach the problem from 
the point of view that there is a single 
definitive value for every data item and they 
contrive to force this point of view onto data; 
their approach to solving problems of 

inconsistencies and other defects in data is to 
try to drive them out.  They seek to achieve 
this by restraining and controlling the way that 
applications interact with data in such a way 
that global consistency is always maintained. 

It would be nice if it were possible to 
eliminate all defects from data but, in reality, 
data in modern systems has many owners with 
differing outlooks and expectations.  It is 
widely distributed and at least partially, 
replicated in many places.  It is practically 
impossible to achieve permanent, global 
accuracy and consistency.  The consequence is 
that applications inevitably encounter 
problems with the data they use from time to 
time and it is no longer acceptable for them to 
simply wait for such issues to be resolved.   

In this paper we describe DataWarp [6, 
10], an approach which permits applications to 
take control of their situation to make progress 
when faced with problematic data and 
illustrate applying the technique using to a 
personal workflow scheduler for the Grid.   

 
2. Traditional Approaches 

 
Traditional thinking about data which is 

replicated and distributed assumes that each 
datum has a “true” value and the data as a 
whole describes a world which, in general, is 
consistent and reasonable.  Accepting this 
assumption, it follows that it should be 
possible for applications to avoid any 
difficulties arising from the data they use if 
they take sufficient care to ensure that all 
operations on data preserve its integrity (and 
compliance with the truth).  This view of data 



is embodied in the use of transactions and 
other approaches such as compensations. 

 
2.1. Transactions 

 
In a transactional system [8], whenever 

there is a change to data, all aspects of the 
change are made in a single logical step.  The 
details of how this is achieved are beyond the 
scope of this paper, what is important is that 
from the point of view of an observer, the data 
moves from one consistent state to the next.  If 
intermediate states do exist, perhaps where 
only part of the change has taken place, 
observers of the data are prevented from seeing 
them. 

For a transactional system to achieve the 
goal of ensuring the whole body of data is 
always globally consistent, every transaction 
must include every copy of every datum which 
needs to be updated.  If any is left out, the 
guarantee that consistency is maintained by the 
transaction is lost.  This is restrictive and can 
lead to difficulties.  For example, some copies 
of data might be located on portable devices 
which spend significant periods of time 
disconnected and the loss of a network link 
could easily result in some copies of data being 
unreachable.  Either of these would cause 
transactions to fail and prevent applications 
from making progress.  Even where it is 
possible to control data in this way, the 
necessity for transactions to have simultaneous 
and exclusive access to each and every data 
item they affect represents a considerable 
constraint on the actions of applications and 
obtaining access to data items which are used 
by many (or all) transactions can present a 
bottleneck.   

 
2.2. Compensations 

 
A less restrictive alternative to 

transactions is to adopt a system of operation 
which uses compensations [5].  Such systems 
are able to take actions which amount to partial 
completion of a transaction.  They don’t need 
the elaborate mechanisms of transactions to 
give data the appearance of moving instantly 
from one consistent state.  Instead, applications 
proceed with their work step by step.  Attached 
to each step is information about what to do if 
the application has to retract from an 
unacceptable situation.  If the action is one 
which can be reversed, the compensation 
information might define how to “undo” the 

action.  In other cases it would describe what 
action has to be taken to bring the application 
and data back into an acceptable state (not 
necessarily the same state as would have 
existed if the action hadn’t been started).  
These “compensations” accumulate as the 
application proceeds.  If something goes 
wrong, the application executes these 
compensations and hence restores itself and 
the data to an acceptable state.  Alternatively, 
(eventually) some event will occur which will 
permit the application to identify that it has 
completed some set of actions at which point 
the compensations are no longer needed and 
can be discarded. 

Compensations relax some of the demands 
made by transactions but in doing so, they 
expose intermediate states to observers and 
other users of data.  If data is to remain 
globally consistent, it is still necessary for 
them to access every copy of every datum they 
use. 

 
2.3. Shortcomings of traditional 
methods 

 
Transactions, compensations and related 

schemes rely on the fundamental assumption 
that each datum has a “true” value, that every 
copy of it will have that value and that if all 
the data were collected together, the resultant 
collection would be free from contradictions 
and inconsistencies.  Unfortunately, this is not 
quite true.  In reality, data is not globally 
consistent for a number of reasons, including: 

 
• Timing differences.  Unless access to is 

strictly controlled using something like 
transactions, updates take time to 
propagate. 

• Some data elements have values which 
change according to their context.  For 
example, when asked their address an 
individual may respond differently if they 
at work or at home. 

• Ownership, confidentiality and other 
issues may slow or prevent propagation of 
updated values.   

• The extent and stringency of consistency 
requirements vary with the needs and 
outlook of the application.  Data which is 
acceptable to one may be problematic for 
another. 
 



3. An alternative approach: 
DataWarp 

 
DataWarp seeks to relax the strong 

requirements associated with approaches to 
using distributed and replicated data such as 
transactions and compensations to permit 
applications to work in environments where 
the data they needed might not be available on 
time and could also be inaccurate or 
inconsistent [9].  The objective is to enable 
applications to work with data where there is 
no unified notion of the correct value for data 
items.  It was inspired by the notion of virtual 
time in which the central system clock is 
replaced with a local notion of the current time 
in each application without affecting the 
results of the computation [11, 12]. 

When an application using transactions or 
compensations encounters data problems, it 
has to delay its work until the problem is 
resolved, possibly accompanied with an appeal 
for corrections to some appropriate authority.   

However, today’s large open systems have 
data which is subject to constant change, 
partially replicated in numerous locations and 
maintained for different purposes by numerous 
owners.  There are many circumstances which 
can lead to data appearing inconsistent.  
Provided the data concerned isn’t subject to 
constant update, problems arising from timing 
differences generally sort themselves out.  
Others may require external intervention but 
modern systems have no central authority able 
to arbitrate and resolve difficulties.  The 
consequence is that an application which 
simply waits when it encounters problematic 
data can suffer considerable delay achieving its 
objectives and may never be able to complete 
any task.   

In the DataWarp philosophy, the attitude 
is taken that the application has to take 
responsibility for getting its work done: it 
cannot afford to wait for some external actor to 
correct things and time spent waiting is time 
which could have been used doing something 
useful.   

A heavy weight implementation of the 
DataWarp philosophy would be, every time a 
problematic data item is encountered, to take 
all data which are in doubt and calculate the 
consequences of adopting every possible value 
for each.  The application can then construct 
the complete set of possible futures, creating a 
tree of possible computations in which each 

branch branches again each time a new data 
issue is encountered.  It may be possible to 
prune out some branches as impossible.  Of the 
remainder, one has to be the “correct” one – 
the one which would have happened if the data 
issue hadn’t arisen.  So long as the application 
doesn’t have to reveal its state to the outside 
world, it can proceed in this indeterminate 
situation simultaneously progressing many 
candidate states.  This set of states will grow 
each time data problems are encountered, and 
shrink whenever a problem is resolved. 

Difficulties arise when the application has 
to do something which requires outside 
interaction.  It is no longer possible to follow 
all possible executions when some dictate one 
action and others a different one.  Now the 
application has to make a choice.  From all 
possible actions, the application has to select 
one to implement.  This could be the one 
which is considered to be most likely, but the 
selection can be made using any measure 
appropriate to the application.  For example, 
the action which entails the least effort or is 
least likely to lead to danger or financial loss.  
Having selected an action, the application is 
able to continue but now when a data issue is 
resolved it should compare what it has actually 
done with what it can now see it would have 
done if the data issue hadn’t occurred.  
Hopefully in most situations, the application 
will find that what it did is exactly “right” – or 
close enough not to matter (perhaps subject to 
some small adjustments).  In the worst case, 
the application will have done something 
undesirable and it will have to retract or 
compensate for some of its actions to get back 
to a satisfactory situation – or as close as it can 
manage. 

In practical application DataWarp 
applications don’t calculate the full set of 
possible executions.  Instead, they select a 
subset of likely candidates (possibly only one) 
based on an analysis of what the problems are 
in the data.  The application needs to keep a 
record of actions which are provisional as they 
arise from data which is in doubt.  However, it 
is to be hoped that in most instances each such 
action taken will turn out to belong to one the 
following three classes: 
• It was exactly the right thing to do. 
• It wasn’t exactly right but it was close 

enough not to matter (not enough to 
warrant action, anyway). 



• It was so long ago that it doesn’t matter 
any more. 
In the event that it turns out that the 

resolution of some data problem means the 
application is unhappy with what it has done, it 
has to do something about it.  However, the 
hope and expectation is that when an 
application is operating in a familiar 
environment this will not happen often. 
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Figure 1: A single datum world 

 
Figure 1 gives a graphical impression of 

DataWarp and other data management 
techniques in action.  It describes a simple 
world in which there is just one datum (an 
integer).  This datum is owned by an 
application which keeps it up to date by 
increasing its value from time to time.  Also in 
this minimal world there are is another 
application which holds its own local copy of 
the datum.  When its owner increments the 
datum it sends a notification to the other 
application but these notifications are not 
synchronised with the updates and sometimes 
take a considerable time to arrive.  In the 
figure, the global state of the world is shown 
by the pair of values, the first being the 
“truth”, the value held by the owner of the 
datum and the second being the value held by 
the other application in its copy.  An update by 
the owning application alone causes the state 
to move to the right, and the arrival of the 
notification at the other application causes the 
system to move diagonally to the left and 
down as shown by the arrows.  Clearly, for this 
world to be in a consistent state the two values 
must be the same and this would eventually 
occur if the data owner were prevented from 
making updates while the rest of the system 
continued to operate.  If the system used 
transactions, consistency would be maintained 
and the world would only ever (be seen to) 

visit the states in the leftmost column.  A 
compensation based system is able to move to 
the right from time to time, but is concerned to 
get back into the leftmost column and fires its 
compensations when it realises it has strayed  
to the right.  In contrast, the DataWarp 
application recognises that data inconsistency 
is inevitable and normal, accepts this and is 
content to be in any column. 

 
4. Using DataWarp to solve a Grid 
Scheduling problem 
 
4.1. Workflows on the Grid 

 
A typical Grid deployment scenario 

consists of an installed Grid platform, such as 
OMII [16] or Globus [7], acting as a gateway 
to a back-end large-scale computational 
resource [4].  An example of such a resource is 
a batch processing system (or resource 
manager) which manages a cluster of machines 
enabling jobs to be submitted from Grid clients 
and executed on those machines.   

 
4.2. Typical Batch Processing Systems 
 

The purpose of a batch processing system, 
or resource manager from a Grid perspective, 
is to schedule and initiate execution of batch 
jobs and to route these jobs between hosts.  
Many batch processing systems also have 
capabilities for transferring data between hosts. 

Of the batch processing systems currently 
in use, many share common architectural 
features [1, 13].  A generic batch processing 
system may look like the one depicted in 
Figure 2 where there are the following 
structural concepts and entities: 

 
• Job: submitted by the client, contains 

information on how to execute the job, and 
optionally includes additional details such 
as how/where to obtain the job’s input and 
output and. 

• Job queue: a list of jobs that are waiting to 
be executed.   

• Client(s): user machine(s). 
• Execution node(s): a host machine that 

accepts and executes jobs. 
• Server: accepts and manages job requests. 
• Scheduler: responsible for determining 

when and where waiting jobs are to be 
executed. 

 



 
Figure 2: An overview of a generic 

batch processing system 
 

Renderings of this framework differ 
across implementations.  For example, a 
Condor [13] client has its own local scheduler 
that holds a local queue, and negotiates with a 
centralised server negotiator to schedule those 
jobs for execution whereas PBS [1] employs 
multiple queues held centrally on the server to 
hold waiting jobs with a centralised server 
scheduler.  Two examples of PBS in real use 
are its deployments on the US TeraGrid and 
the UK National Grid Service (NGS) [15].   

For this paper, we use the NGS as an 
example Grid deployment to illustrate a typical 
usage scenario.  There are two key methods by 
which jobs may be submitted to PBS on the 
NGS: logging into one of the NGS head nodes 
and submitting to the PBS cluster accessible 
via that head node directly or using a Globus 
client installed on the user’s machine to submit 
jobs through a Globus server.  Either of these 
methods requires a valid set of credentials for 
authentication purposes to access the NGS 
through the Globus Security Infrastructure that 
ensures only approved users may use the 
resources.  A full overview of these security 
measures is beyond the scope of this 
discussion.  For the remainder of this paper we 
shall assume that users have the necessary 
credentials and are able to perform the two 
basic activities which enable them to use these 
resources; submitting jobs and monitoring the 
status of jobs. 

Once jobs are submitted to PBS they 
reside on the queue until the scheduler 
allocates them to an execution node.  There are 
two basic factors that affect how long this 
process will take to complete: Queue time (Q) 
and Execution time (E).  Essentially, the time 
to execute the job will be Q + E. 

However, it is possible to submit jobs 
which are not fully specified.  For example, a 
job script may execute an application that uses 
data that is not yet available at the point of 

submission and it is possible to devise a 
process to take advantage of this situation to 
reduce the impact of Q.  We can define this 
process with the concept of a placeholder job: 
a job which is inserted into the queue before it 
can be fully specified and proceeds up the 
queue as a normal job.  At some point before it 
reaches the head of the queue, the job is re-
configured.  Users employ this tactic manually 
when the progress of jobs through the queue is 
slow but we are proposing to use the technique 
in an automated sense. 

 
4.3. An Example Workflow 

 
Typically, multiple job submissions are 

organised into a workflow that describes how 
the tasks are related in terms of control and/or 
data requirements and production. 

For the purposes of this paper, let us 
introduce a simple example workflow 
described in pseudocode that represents a 
possible set of workflow actions.  Such a 
representation allows us to abstract away from 
unnecessary implementation-specific details. 

The workflow uses the following basic 
abstract structures, operations and concepts: 

 
• Data: a structure that represents data. 
• Job: a structure holding information about 

a job. 
 
• J.submitJob(Data D…): submits a job J to 

a batch scheduler with the set of data D as 
input. 

• J.waitFor(): wait until the job has been 
executed  

• Data D = J.getResults(): extract the 
results D from a job, J. 

 
• parallel is used to denote concurrent 

execution of multiple branches.   
 
The above functional abstractions are free 

to be defined in terms of a real platform; for 
PBS for example, submitJob would be based 
around the command qsub, and waitFor 
around qstat. 

A simple example workflow with 
concurrency and conditional characteristics: 

 
Data DI             # Input  
Data DJK            # Output J or K 
Data DA,DB,DC,DH    # Other Output 
Job A,B,C,H,J,K # Tasks 
 

 
Client 

 
 

Server 

 
Scheduler 

Execution 
Node 

Job Queue 



A.submitJob(DI) 
A.waitFor() 
DA = A.getResults() 
 
parallel { 
    B.submitJob(DA) 
    B.waitFor() 
    DB = B.getResults() 
} and { 
    H.submitJob(DA) 
    DH = H.getResults() 
    if ( some_predicate(DH) ) { 
        J.submitJob(DH) 
        J.waitFor() 
        DJK = J.getResults() 
    } else { 
        K.submitJob(DH) 
        K.waitFor() 
        DJK = K.getResults() 
    } 
} 
 
C.submitJob(DB, DJK) 
C.waitFor() 
DC = C.getResults() 

 
This workflow which follows the typical 

Grid pattern of pre-process, compute and post-
process is visually represented in Figure 3. 

 

 
Figure 3: Diagrammatic representation 

of example workflow 
 

4.4. Optimising a workflow using 
DataWarp  

 
The simple obvious way to execute a 

workflow is to start at the beginning with the 
first task and put it in a queue for execution 
and wait for it to complete.  Then, with that job 
completed, move on to the next… until you are 
done.  The trouble with that is completion of a 
workflow with n elements entails n waits for a 
job to make its way up the queue [2, 14]. 

A nice feature about Grid workflows from 
the DataWarp point of view is that the typical 
workflow seeks to co-ordinate a number of 
activities to compile some result but these 

activities and their results are not often 
reported to or acted upon by others until the 
workflow is complete so our scheduler can 
exist in a non-determinate state with a number 
of possible executions in progress.  It only has 
to finally choose which to keep at the last 
moment, just as it completes and announces 
the result. 

The DataWarp scheduler is an application 
that an individual with a workflow to execute 
would use.  Its objective is to complete a 
workflow as fast as it can; optimal use of 
resources and/or fairness of allocation is a 
problem for the scheduler at the data centre.  
The DataWarp scheduler uses DataWarp ideas 
at several levels. 

 

 
Figure 4: Example workflow showing 

execution times 
 

Table 1: Job submissions timetable 
 

Process Execution 
Time (E) 

Delay from start 
of execution for 
placeholder jobs 

A 7 0 
B 20 7 
C 43 27 
H 5 7 
J 11 12 
K 8 12 

 
At the first level, the scheduler identifies 

the dependencies between the jobs a workflow 
contains.  Any jobs which don’t rely on results 
from others can be put on the queue for 
execution immediately (perhaps sorted into 
order of how early their results are likely to be 
used).  Using experience of the behaviour of 
the queue and estimates of when required input 
will be available, the scheduler can add further 
jobs to the queue timed so that they arrive at 
the top just as the data they need becomes 
available.  Getting this right permits all but the 



first element of the workflow to proceed as fast 
as if it were possible to slip jobs straight into 
first place on the queue.  Naturally, the 
scheduler needs to monitor its performance in 
this respect and be more or less aggressive in 
its placement of placeholder jobs as 
appropriate. 

Taking the example from section 4.3, if it 
takes six minutes from submission from a job 
to begin execution and the jobs take the times 
shown in Figure 4, the scheduler would 
generate the job submission times shown in 
Table 1.  Assuming execution proceeds 
according to plan, the workflow is completed 
by the DataWarp scheduler in 76 minutes (6 + 
7 + 20 + 43) compated with the naive 
execution which would take 88 minutes (6 + 7 
+ 6 + 20 + 6 + 43).   

At a second level, our scheduler can 
handle the consequences when things don’t 
work out as planned.  Consider the 
consequences if job H encounters difficulties 
and hasn’t reported its result when J and K are 
scheduled to start.  The placeholder jobs for J 
and K will arrive at the head of the queue 
before the scheduler is ready to decide which 
to execute.  The DataWarp scheduler can 
handle this.  It allows both to start, noting that 
it is still waiting for output from H.  When it 
becomes available, the scheduler can abort the 
unnecessary job (or discard its output) and 
continue as normal. 

Now let us consider the situation if B is 
finishing but H still hasn’t completed.  By now 
both J and K will be complete but the 
scheduler still can’t decide which is the correct 
output to select as input to B.  It can’t do what 
it did with J and K because it only has one 
placeholder job ready.  Instead, it can exploit 
knowledge of past executions of the workflow 
(or other metadata) to identify how critical this 
input is to the result.  The scheduler may then 
be able to make a selection between the output 
of J or K and still complete C on time.  In the 
example, the output from J, K could be a 
configuration for a visualisation programme 
with the property that, J always produces an 
acceptable result, whilst K produces one which 
is more aestheitcally pleasing but only works 
on some classes of data (identified in H).  The 
scheduler can place a (backup) job in the 
queue for C which it can use if it becomes 
clear that its selection between J and K is 
unacceptable. 

 

5. Conclusion 
 
Modern applications operate in a 

connected world in which the data they use is 
distributed and replicated.  A consequence is 
that it has become extremely hard, if not 
impossible, to ensure that data remains 
consistent and accurate.  Schemes like 
transactions and compensations attempt to 
enforce consistency on data but are too 
restrictive to be used in general.  The 
consequence is that applications need to be 
able to make progress in the face of defects in 
data since to do otherwise seriously 
compromises their ability to complete their 
work; they may wait indefinitely for data 
issues to be resolved and there is no central 
arbiter to whom to appeal for help. 

DataWarp allows processes to make 
progress even when not all the data they 
require is unavailable or known to be 
inconsistent.  It subsequently corrects any 
problems that arise, by making forward 
progress to an acceptable state, not by undoing 
its actions and we have outlined how this 
protocol can be applied to a personal Grid 
workflow scheduler. 

In Grid applications, jobs typically take a 
long time to run and generally sit in a queue 
for long periods waiting to be executed.  Using 
DataWarp, our scheduler is able to reduce the 
total time to complete a workflow by using 
placeholder jobs that will, ideally, reach the 
head of the queue just in time to begin 
execution.  This approach is practical in the 
way the Grid is used today and is often 
implemented manually or in an ad-hoc 
workflow by users.  How a community of 
users, all using such an optimistic scheduler 
once it had been automated, would evolve in 
practice is an interesting question.  We believe 
the resulting resource utilisation would be 
acceptable from the resource owner's point of 
view and that the community of users would 
be seen to evolve into an ad-hoc collaboration, 
not unlike the competing participants in 
Axelrod's experiments [3]. 
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