

DataWarp: Empowering Applications to Make Progress in the Face of
Contradictory or Inconsistent Data

Stephen Crouch, Peter Henderson, Robert John Walters
University of Southampton,

Highfield, Southampton,
United Kingdom,

SO17 1BJ
{stc,ph,rjw1}@ecs.soton.ac.uk

Abstract

In modern systems data is distributed and

replicated. Its ownership is also distributed
amongst a variety of stakeholders with
differing requirements and expectations. A
consequence is applications inevitably find
data they need is missing or contains
contradictions and inconsistencies from time
to time leaving them unable to progress within
their domain. Techniques such as transactions
can help but are not enough as they rely on
being able to impose their own consistency
rules on data and this isn't always possible.
What is required is an ability for applications
to move forward despite the problems in local
data by applying higher-level reasoning to that
data. This paper describes DataWarp, a
technique which empowers applications to
make progress in such environments and
illustrates its use to specify an efficient
personal Grid workflow scheduler.

1. Introduction

In the past when applications operated in

isolation, each had complete control over the
data they used and owned. For modern
connected systems, this is no longer the case
and now applications need to use and manage
data which is distributed and replicated.
Techniques such as transactions and systems
of compensations approach the problem from
the point of view that there is a single
definitive value for every data item and they
contrive to force this point of view onto data;
their approach to solving problems of

inconsistencies and other defects in data is to
try to drive them out. They seek to achieve
this by restraining and controlling the way that
applications interact with data in such a way
that global consistency is always maintained.

It would be nice if it were possible to
eliminate all defects from data but, in reality,
data in modern systems has many owners with
differing outlooks and expectations. It is
widely distributed and at least partially,
replicated in many places. It is practically
impossible to achieve permanent, global
accuracy and consistency. The consequence is
that applications inevitably encounter
problems with the data they use from time to
time and it is no longer acceptable for them to
simply wait for such issues to be resolved.

In this paper we describe DataWarp [6,
10], an approach which permits applications to
take control of their situation to make progress
when faced with problematic data and
illustrate applying the technique using to a
personal workflow scheduler for the Grid.

2. Traditional Approaches

Traditional thinking about data which is

replicated and distributed assumes that each
datum has a “true” value and the data as a
whole describes a world which, in general, is
consistent and reasonable. Accepting this
assumption, it follows that it should be
possible for applications to avoid any
difficulties arising from the data they use if
they take sufficient care to ensure that all
operations on data preserve its integrity (and
compliance with the truth). This view of data

is embodied in the use of transactions and
other approaches such as compensations.

2.1. Transactions

In a transactional system [8], whenever

there is a change to data, all aspects of the
change are made in a single logical step. The
details of how this is achieved are beyond the
scope of this paper, what is important is that
from the point of view of an observer, the data
moves from one consistent state to the next. If
intermediate states do exist, perhaps where
only part of the change has taken place,
observers of the data are prevented from seeing
them.

For a transactional system to achieve the
goal of ensuring the whole body of data is
always globally consistent, every transaction
must include every copy of every datum which
needs to be updated. If any is left out, the
guarantee that consistency is maintained by the
transaction is lost. This is restrictive and can
lead to difficulties. For example, some copies
of data might be located on portable devices
which spend significant periods of time
disconnected and the loss of a network link
could easily result in some copies of data being
unreachable. Either of these would cause
transactions to fail and prevent applications
from making progress. Even where it is
possible to control data in this way, the
necessity for transactions to have simultaneous
and exclusive access to each and every data
item they affect represents a considerable
constraint on the actions of applications and
obtaining access to data items which are used
by many (or all) transactions can present a
bottleneck.

2.2. Compensations

A less restrictive alternative to

transactions is to adopt a system of operation
which uses compensations [5]. Such systems
are able to take actions which amount to partial
completion of a transaction. They don’t need
the elaborate mechanisms of transactions to
give data the appearance of moving instantly
from one consistent state. Instead, applications
proceed with their work step by step. Attached
to each step is information about what to do if
the application has to retract from an
unacceptable situation. If the action is one
which can be reversed, the compensation
information might define how to “undo” the

action. In other cases it would describe what
action has to be taken to bring the application
and data back into an acceptable state (not
necessarily the same state as would have
existed if the action hadn’t been started).
These “compensations” accumulate as the
application proceeds. If something goes
wrong, the application executes these
compensations and hence restores itself and
the data to an acceptable state. Alternatively,
(eventually) some event will occur which will
permit the application to identify that it has
completed some set of actions at which point
the compensations are no longer needed and
can be discarded.

Compensations relax some of the demands
made by transactions but in doing so, they
expose intermediate states to observers and
other users of data. If data is to remain
globally consistent, it is still necessary for
them to access every copy of every datum they
use.

2.3. Shortcomings of traditional
methods

Transactions, compensations and related

schemes rely on the fundamental assumption
that each datum has a “true” value, that every
copy of it will have that value and that if all
the data were collected together, the resultant
collection would be free from contradictions
and inconsistencies. Unfortunately, this is not
quite true. In reality, data is not globally
consistent for a number of reasons, including:

• Timing differences. Unless access to is

strictly controlled using something like
transactions, updates take time to
propagate.

• Some data elements have values which
change according to their context. For
example, when asked their address an
individual may respond differently if they
at work or at home.

• Ownership, confidentiality and other
issues may slow or prevent propagation of
updated values.

• The extent and stringency of consistency
requirements vary with the needs and
outlook of the application. Data which is
acceptable to one may be problematic for
another.

3. An alternative approach:
DataWarp

DataWarp seeks to relax the strong

requirements associated with approaches to
using distributed and replicated data such as
transactions and compensations to permit
applications to work in environments where
the data they needed might not be available on
time and could also be inaccurate or
inconsistent [9]. The objective is to enable
applications to work with data where there is
no unified notion of the correct value for data
items. It was inspired by the notion of virtual
time in which the central system clock is
replaced with a local notion of the current time
in each application without affecting the
results of the computation [11, 12].

When an application using transactions or
compensations encounters data problems, it
has to delay its work until the problem is
resolved, possibly accompanied with an appeal
for corrections to some appropriate authority.

However, today’s large open systems have
data which is subject to constant change,
partially replicated in numerous locations and
maintained for different purposes by numerous
owners. There are many circumstances which
can lead to data appearing inconsistent.
Provided the data concerned isn’t subject to
constant update, problems arising from timing
differences generally sort themselves out.
Others may require external intervention but
modern systems have no central authority able
to arbitrate and resolve difficulties. The
consequence is that an application which
simply waits when it encounters problematic
data can suffer considerable delay achieving its
objectives and may never be able to complete
any task.

In the DataWarp philosophy, the attitude
is taken that the application has to take
responsibility for getting its work done: it
cannot afford to wait for some external actor to
correct things and time spent waiting is time
which could have been used doing something
useful.

A heavy weight implementation of the
DataWarp philosophy would be, every time a
problematic data item is encountered, to take
all data which are in doubt and calculate the
consequences of adopting every possible value
for each. The application can then construct
the complete set of possible futures, creating a
tree of possible computations in which each

branch branches again each time a new data
issue is encountered. It may be possible to
prune out some branches as impossible. Of the
remainder, one has to be the “correct” one –
the one which would have happened if the data
issue hadn’t arisen. So long as the application
doesn’t have to reveal its state to the outside
world, it can proceed in this indeterminate
situation simultaneously progressing many
candidate states. This set of states will grow
each time data problems are encountered, and
shrink whenever a problem is resolved.

Difficulties arise when the application has
to do something which requires outside
interaction. It is no longer possible to follow
all possible executions when some dictate one
action and others a different one. Now the
application has to make a choice. From all
possible actions, the application has to select
one to implement. This could be the one
which is considered to be most likely, but the
selection can be made using any measure
appropriate to the application. For example,
the action which entails the least effort or is
least likely to lead to danger or financial loss.
Having selected an action, the application is
able to continue but now when a data issue is
resolved it should compare what it has actually
done with what it can now see it would have
done if the data issue hadn’t occurred.
Hopefully in most situations, the application
will find that what it did is exactly “right” – or
close enough not to matter (perhaps subject to
some small adjustments). In the worst case,
the application will have done something
undesirable and it will have to retract or
compensate for some of its actions to get back
to a satisfactory situation – or as close as it can
manage.

In practical application DataWarp
applications don’t calculate the full set of
possible executions. Instead, they select a
subset of likely candidates (possibly only one)
based on an analysis of what the problems are
in the data. The application needs to keep a
record of actions which are provisional as they
arise from data which is in doubt. However, it
is to be hoped that in most instances each such
action taken will turn out to belong to one the
following three classes:
• It was exactly the right thing to do.
• It wasn’t exactly right but it was close

enough not to matter (not enough to
warrant action, anyway).

• It was so long ago that it doesn’t matter
any more.
In the event that it turns out that the

resolution of some data problem means the
application is unhappy with what it has done, it
has to do something about it. However, the
hope and expectation is that when an
application is operating in a familiar
environment this will not happen often.

0,0

3,3

5,2

4,1

3,0

4,23,22,2

3,12,11,1

2,01,0

4,3 5,3

Figure 1: A single datum world

Figure 1 gives a graphical impression of

DataWarp and other data management
techniques in action. It describes a simple
world in which there is just one datum (an
integer). This datum is owned by an
application which keeps it up to date by
increasing its value from time to time. Also in
this minimal world there are is another
application which holds its own local copy of
the datum. When its owner increments the
datum it sends a notification to the other
application but these notifications are not
synchronised with the updates and sometimes
take a considerable time to arrive. In the
figure, the global state of the world is shown
by the pair of values, the first being the
“truth”, the value held by the owner of the
datum and the second being the value held by
the other application in its copy. An update by
the owning application alone causes the state
to move to the right, and the arrival of the
notification at the other application causes the
system to move diagonally to the left and
down as shown by the arrows. Clearly, for this
world to be in a consistent state the two values
must be the same and this would eventually
occur if the data owner were prevented from
making updates while the rest of the system
continued to operate. If the system used
transactions, consistency would be maintained
and the world would only ever (be seen to)

visit the states in the leftmost column. A
compensation based system is able to move to
the right from time to time, but is concerned to
get back into the leftmost column and fires its
compensations when it realises it has strayed
to the right. In contrast, the DataWarp
application recognises that data inconsistency
is inevitable and normal, accepts this and is
content to be in any column.

4. Using DataWarp to solve a Grid
Scheduling problem

4.1. Workflows on the Grid

A typical Grid deployment scenario

consists of an installed Grid platform, such as
OMII [16] or Globus [7], acting as a gateway
to a back-end large-scale computational
resource [4]. An example of such a resource is
a batch processing system (or resource
manager) which manages a cluster of machines
enabling jobs to be submitted from Grid clients
and executed on those machines.

4.2. Typical Batch Processing Systems

The purpose of a batch processing system,
or resource manager from a Grid perspective,
is to schedule and initiate execution of batch
jobs and to route these jobs between hosts.
Many batch processing systems also have
capabilities for transferring data between hosts.

Of the batch processing systems currently
in use, many share common architectural
features [1, 13]. A generic batch processing
system may look like the one depicted in
Figure 2 where there are the following
structural concepts and entities:

• Job: submitted by the client, contains

information on how to execute the job, and
optionally includes additional details such
as how/where to obtain the job’s input and
output and.

• Job queue: a list of jobs that are waiting to
be executed.

• Client(s): user machine(s).
• Execution node(s): a host machine that

accepts and executes jobs.
• Server: accepts and manages job requests.
• Scheduler: responsible for determining

when and where waiting jobs are to be
executed.

Figure 2: An overview of a generic

batch processing system

Renderings of this framework differ
across implementations. For example, a
Condor [13] client has its own local scheduler
that holds a local queue, and negotiates with a
centralised server negotiator to schedule those
jobs for execution whereas PBS [1] employs
multiple queues held centrally on the server to
hold waiting jobs with a centralised server
scheduler. Two examples of PBS in real use
are its deployments on the US TeraGrid and
the UK National Grid Service (NGS) [15].

For this paper, we use the NGS as an
example Grid deployment to illustrate a typical
usage scenario. There are two key methods by
which jobs may be submitted to PBS on the
NGS: logging into one of the NGS head nodes
and submitting to the PBS cluster accessible
via that head node directly or using a Globus
client installed on the user’s machine to submit
jobs through a Globus server. Either of these
methods requires a valid set of credentials for
authentication purposes to access the NGS
through the Globus Security Infrastructure that
ensures only approved users may use the
resources. A full overview of these security
measures is beyond the scope of this
discussion. For the remainder of this paper we
shall assume that users have the necessary
credentials and are able to perform the two
basic activities which enable them to use these
resources; submitting jobs and monitoring the
status of jobs.

Once jobs are submitted to PBS they
reside on the queue until the scheduler
allocates them to an execution node. There are
two basic factors that affect how long this
process will take to complete: Queue time (Q)
and Execution time (E). Essentially, the time
to execute the job will be Q + E.

However, it is possible to submit jobs
which are not fully specified. For example, a
job script may execute an application that uses
data that is not yet available at the point of

submission and it is possible to devise a
process to take advantage of this situation to
reduce the impact of Q. We can define this
process with the concept of a placeholder job:
a job which is inserted into the queue before it
can be fully specified and proceeds up the
queue as a normal job. At some point before it
reaches the head of the queue, the job is re-
configured. Users employ this tactic manually
when the progress of jobs through the queue is
slow but we are proposing to use the technique
in an automated sense.

4.3. An Example Workflow

Typically, multiple job submissions are

organised into a workflow that describes how
the tasks are related in terms of control and/or
data requirements and production.

For the purposes of this paper, let us
introduce a simple example workflow
described in pseudocode that represents a
possible set of workflow actions. Such a
representation allows us to abstract away from
unnecessary implementation-specific details.

The workflow uses the following basic
abstract structures, operations and concepts:

• Data: a structure that represents data.
• Job: a structure holding information about

a job.

• J.submitJob(Data D…): submits a job J to

a batch scheduler with the set of data D as
input.

• J.waitFor(): wait until the job has been
executed

• Data D = J.getResults(): extract the
results D from a job, J.

• parallel is used to denote concurrent

execution of multiple branches.

The above functional abstractions are free

to be defined in terms of a real platform; for
PBS for example, submitJob would be based
around the command qsub, and waitFor
around qstat.

A simple example workflow with
concurrency and conditional characteristics:

Data DI # Input
Data DJK # Output J or K
Data DA,DB,DC,DH # Other Output
Job A,B,C,H,J,K # Tasks

Client

Server

Scheduler

Execution
Node

Job Queue

A.submitJob(DI)
A.waitFor()
DA = A.getResults()

parallel {
 B.submitJob(DA)
 B.waitFor()
 DB = B.getResults()
} and {
 H.submitJob(DA)
 DH = H.getResults()
 if (some_predicate(DH)) {
 J.submitJob(DH)
 J.waitFor()
 DJK = J.getResults()
 } else {
 K.submitJob(DH)
 K.waitFor()
 DJK = K.getResults()
 }
}

C.submitJob(DB, DJK)
C.waitFor()
DC = C.getResults()

This workflow which follows the typical

Grid pattern of pre-process, compute and post-
process is visually represented in Figure 3.

Figure 3: Diagrammatic representation

of example workflow

4.4. Optimising a workflow using
DataWarp

The simple obvious way to execute a

workflow is to start at the beginning with the
first task and put it in a queue for execution
and wait for it to complete. Then, with that job
completed, move on to the next… until you are
done. The trouble with that is completion of a
workflow with n elements entails n waits for a
job to make its way up the queue [2, 14].

A nice feature about Grid workflows from
the DataWarp point of view is that the typical
workflow seeks to co-ordinate a number of
activities to compile some result but these

activities and their results are not often
reported to or acted upon by others until the
workflow is complete so our scheduler can
exist in a non-determinate state with a number
of possible executions in progress. It only has
to finally choose which to keep at the last
moment, just as it completes and announces
the result.

The DataWarp scheduler is an application
that an individual with a workflow to execute
would use. Its objective is to complete a
workflow as fast as it can; optimal use of
resources and/or fairness of allocation is a
problem for the scheduler at the data centre.
The DataWarp scheduler uses DataWarp ideas
at several levels.

Figure 4: Example workflow showing

execution times

Table 1: Job submissions timetable

Process Execution
Time (E)

Delay from start
of execution for
placeholder jobs

A 7 0
B 20 7
C 43 27
H 5 7
J 11 12
K 8 12

At the first level, the scheduler identifies

the dependencies between the jobs a workflow
contains. Any jobs which don’t rely on results
from others can be put on the queue for
execution immediately (perhaps sorted into
order of how early their results are likely to be
used). Using experience of the behaviour of
the queue and estimates of when required input
will be available, the scheduler can add further
jobs to the queue timed so that they arrive at
the top just as the data they need becomes
available. Getting this right permits all but the

first element of the workflow to proceed as fast
as if it were possible to slip jobs straight into
first place on the queue. Naturally, the
scheduler needs to monitor its performance in
this respect and be more or less aggressive in
its placement of placeholder jobs as
appropriate.

Taking the example from section 4.3, if it
takes six minutes from submission from a job
to begin execution and the jobs take the times
shown in Figure 4, the scheduler would
generate the job submission times shown in
Table 1. Assuming execution proceeds
according to plan, the workflow is completed
by the DataWarp scheduler in 76 minutes (6 +
7 + 20 + 43) compated with the naive
execution which would take 88 minutes (6 + 7
+ 6 + 20 + 6 + 43).

At a second level, our scheduler can
handle the consequences when things don’t
work out as planned. Consider the
consequences if job H encounters difficulties
and hasn’t reported its result when J and K are
scheduled to start. The placeholder jobs for J
and K will arrive at the head of the queue
before the scheduler is ready to decide which
to execute. The DataWarp scheduler can
handle this. It allows both to start, noting that
it is still waiting for output from H. When it
becomes available, the scheduler can abort the
unnecessary job (or discard its output) and
continue as normal.

Now let us consider the situation if B is
finishing but H still hasn’t completed. By now
both J and K will be complete but the
scheduler still can’t decide which is the correct
output to select as input to B. It can’t do what
it did with J and K because it only has one
placeholder job ready. Instead, it can exploit
knowledge of past executions of the workflow
(or other metadata) to identify how critical this
input is to the result. The scheduler may then
be able to make a selection between the output
of J or K and still complete C on time. In the
example, the output from J, K could be a
configuration for a visualisation programme
with the property that, J always produces an
acceptable result, whilst K produces one which
is more aestheitcally pleasing but only works
on some classes of data (identified in H). The
scheduler can place a (backup) job in the
queue for C which it can use if it becomes
clear that its selection between J and K is
unacceptable.

5. Conclusion

Modern applications operate in a

connected world in which the data they use is
distributed and replicated. A consequence is
that it has become extremely hard, if not
impossible, to ensure that data remains
consistent and accurate. Schemes like
transactions and compensations attempt to
enforce consistency on data but are too
restrictive to be used in general. The
consequence is that applications need to be
able to make progress in the face of defects in
data since to do otherwise seriously
compromises their ability to complete their
work; they may wait indefinitely for data
issues to be resolved and there is no central
arbiter to whom to appeal for help.

DataWarp allows processes to make
progress even when not all the data they
require is unavailable or known to be
inconsistent. It subsequently corrects any
problems that arise, by making forward
progress to an acceptable state, not by undoing
its actions and we have outlined how this
protocol can be applied to a personal Grid
workflow scheduler.

In Grid applications, jobs typically take a
long time to run and generally sit in a queue
for long periods waiting to be executed. Using
DataWarp, our scheduler is able to reduce the
total time to complete a workflow by using
placeholder jobs that will, ideally, reach the
head of the queue just in time to begin
execution. This approach is practical in the
way the Grid is used today and is often
implemented manually or in an ad-hoc
workflow by users. How a community of
users, all using such an optimistic scheduler
once it had been automated, would evolve in
practice is an interesting question. We believe
the resulting resource utilisation would be
acceptable from the resource owner's point of
view and that the community of users would
be seen to evolve into an ad-hoc collaboration,
not unlike the competing participants in
Axelrod's experiments [3].

6. References

[1] Altair Engineering Inc, "Portable Batch

System." 2007, http://altair.org/.
[2] A. Andrieux, D. Berry, J. Garibaldi, S.

Jarvis, J. MacLaren, D. Ouelhadj, and D.
Snelling, "Open Issues in Grid Scheduling,"
in Workshop on Open Issues in Grid

Scheduling, National e-Science Centre,
Edinburgh, 2003.

[3] R. Axelrod, The Evolution of Co-operation:
Penguin, 1990.

[4] F. Berman, A. J. G. Hey, and G. C. Fox,
Grid Computing: Making the Global
Infrastructure a Reality: John Wiley and
Sons Ltd, 2003.

[5] M. Butler and C. Ferreira, "A Process
Compensation Language," in Second
International Conference on Integrated
Formal Methods IFM2000, Schloss
Dagstuhl, Germany, 2000.

[6] S. Crouch, P. Henderson, and R. J.
Walters, "Building Applications able to cope
with Problematic Data using a DataWarp
Approach," in 7th International Conference
on Enterprise Information Systems, Miami,
USA, 2005, pp. 411-414.

[7] I. Foster, C. Kesselman, and S. Tuecke,
"The Anatomy of the Grid: Enabling
Scaleable Virtual Organization,"
International Journal of Supercomputer
Applications and High Performance
Computing, vol. 15, pp. 200-222, 2001.

[8] J. Gray and A. Reuter, Transaction
Processing: Concepts and Techniques
Morgan Kaufmann Publishers Inc,, 2001.

[9] P. Henderson, R. J. Walters, and S.
Crouch, "Inconsistency Tolerance across
Enterprise Solutions," in 8th IEEE
Workshop in Future Trends of Distributed

Computer Systems (FTDCS01), Bologna,
Italy, 2001, pp. 164-169.

[10] P. Henderson, R. J. Walters, S. Crouch,
and Q. Ni, "DataWarp: Building
Applications which make Progress in and
Inconsistent World," in 4th IFIP WG 6.1
International Conference, Distributed
Applications and Interoperable Systems
(DAIS 2003), Paris, 2003, pp. 167-178.

[11] D. R. Jefferson, "Virtual Time," ACM
Transactions on Programming Languages
and Systems, vol. 7, pp. 404-425, 3 July
1985 1985.

[12] D. R. Jefferson, "Virtual Time II: Storage
Management in Distributed Simulation," in
9th Annual ACM Symposium on Principles
of Distributed Computing, Quebec City,
Quebec, Canada, 1990, pp. 78-89.

[13] M. Litzkow and M. Livny, "Experience
with the Condor Distributed Batch System,"
in IEEE Workshop on Experimental
Distributed Systems, Huntsville, AL, 1990.

[14] M. Livny, J. Basney, R. Raman, and T.
Tannenbaum, "Mechanisms for High
Throughput Computing," SPEEDUP
Journal, vol. 11, pp. 36-40, June 1997
1997.

[15] National Grid Service (NGS),
http://www.grid-support.ac.uk/.

[16] Open Middleware Infrastructure Institute
(OMII), "OMII Release," 2007.

