
Modular Open Systems Architecture

Peter Henderson

14th April 2009

This paper, along with a bibliography, is available from http://openpdq.com/OpenSystems

.

The author can be contacted at mailto:p.henderson@ecs.soton.ac.uk

1 Overview

The usual definition of an Open System is that it is built from components that
have been designed to be interchangeable. The interfaces to these interchangeable
components are clearly defined and openly published. This enables anyone to pro-
duce a new component that enhances the capabilities of the system into which it is
plugged.

The business model that supports this enterprise is one of mutual benefit, where the
supplier of the Open System and the supplier of the Plug-In enhance each other’s
market position.

Open System - An Open System is a modular construction that has been designed
in such a way that its modules have precisely defined and publicly owned interfaces
that allow independent suppliers to provide improved capability by providing plug-
compatible, innovative modules.

This paper discusses what it means for a system to be Open. It discusses the Costs
and the Benefits. It gives a plausible argument that the benefits can be realised if
the Principles of Open Systems are followed, in particuar that the system should be
based on a clearly defined Open System Architecture.

It is not essential that all the components of an Open System are open, indeed
it would be impossible to realise this ideal in most commercial scenarios. The
openness refers to the interfaces to components. These must be sufficiently fully-
general and sufficiently well-defined that producing plug-compatible components is
both practical and economically sensible.

The architecture of the system as a whole must be based on a model of the potential
for evolution and innovation that would make producing new system components
attractive to an independent organisation.

The paper also discusses the relationship between Open Systems and Open Source
Software, which are not the same thing, although the ideas and the principles

1



are clearly related. In particular, Open Systems Principles are not specific to just
software.

The paper attempts to establish the principles of Open Systems and to introduce
methods of Open System Architecture, which are fundamental to the development
of open systems. An extensive bibliography is provided.

2 Introduction

We are particularly concerned with systems that are very large, such as those
installed by national goverments, where large teams of engineers are involved in
building the system over a very long lifetime. The requirements that the system
is expected to meet will evolve though the whole-life of the system - during both
its development and its life in service. Consequently, the system will need to be
designed in a way that allows it to evolve through life.

A well-designed Open System has the property of supporting innovation and rapid
evolution, because of the ability of independent suppliers to produce new function-
ality concurrently.

Whether we are considering a software system, a physical system, an electrome-
chanical system or a purely electronic system, certain concepts are universal. For
example, the system of interest will be modular. Hence we tend to think of mod-
ularity and openness as being part and parcel of the same thing. They are not. A
system can be modular without being open. Here, we are primarily concerned with
the property of openness and take modularity as given.

Figure 1. An Open System. Components plugged into an Open infrastructure.

Figure 1 is a schematic of a system that is often used to discuss to concepts behind
Open Systems. It shows eight components (or modules) plugged into a common
infrastructure. The basic idea is that this infrastructure provides the means whereby
the pluggable components are able to communicate with each other. Variants of
the system can be specialised by choosing alternative components to plug into the
infrastructure.

Familiar examples of such a system would include the contemporary arrangements
of hi-fi systems that many of us have, where the (rather minimal) infrastructure
comprises the various standards whereby audio devices can be matched. Familiar
from computing systems would be the contemporary operating system which is a

2



complex infrastructure that allows applications programs to communicate with each
other, not least through shared resources such as the file store.

More specifically, for the kind of large, software-intensive systems that governments
install, it is the middleware in the infrastructure that provides the open platform
into which application-specific components are plugged. Realising openness at this
uppermost, application layer is as fundamental to the success of Open Systems as
the use of COTS in the infrastructure itself.

The key aspect of this modular structure is that the architecture has been chosen so
that the replaceable components can be readily replaced in order to create innovative
new evolutions of the system. This is not a trivial design exercise. It is essential that
the components are chosen in such a way that considerable variation is supported,
so as to maximise the opportunity for innovation. This requires substantial effort on
defining and maintaining the architecture, not least the level of granularity that is
chosen for the replaceable components. We will cover these aspects later, when we
describe the principles of Open Systems and methods of Architecture Description.

System Architecture - The architecture of a system is (an expression of) its gross
structure at a high level of abstraction. For large systems, the architecture and its
description, will be modular. This allows the designers to convince themselves and
other stakeholders, by modular reasoning, that the solution represented by the ar-
chitecture is capable of achieving its objectives, including through-life development
delivering incremental improvements, to cost.

Figure 2. An Open Software System showing COTS infrastrucure and Domain
Specific Applications.

3



Open System Architecture - A System Architecture which has been organised
as a collection of collaborating components with well-defined and publicly available
open interfaces, such that the potential for a wide range of prospective evolutions of
the base product are designed-in from the start. Realistically, Open Systems must
embrace legacy components, so the means of developing architectures that support
opened infrastructures and opened interfaces to legacy components is fundamental.

Figure 2 shows a more detailed view of the modular architecture that we envisage
for software-intensive Open Systems. As technology matures, so the architecture
adapts. More and more of it becomes part of the standard infrastructure that
everyone builds on, and COTS components become available from which to build the
infrastructure. This sedimentation of technology is a natural evolutionary process
that our Open System vision needs to embrace.

At some level however, at some point in time, the infrastructure and the components
become domain specific and few if any application-level COTS components are
available from which to build solutions. Typically, what is available is lots of legacy
components from which to build. It is this area that Open Systems comes into play.
When developing a solution that will have a long life and will be economical to evolve
through-life, the designers must develop an architecture where the components
and domain specific infrastructure have been chosen to allow both legacy and new
components to be integrated into effective and economical solutions.

Standards, Specifications - In common parlance, we use the term Standards in
two ways. First it is commonly (and correctly) used for International Standards
that are under the auspices of official bodies such as ANSI. Secondly, and rather
informally, we commonly use the term for the kind of consensus-based specifications
that are agreed by industry-collabration bodies such as OASIS, W3C etc. The latter
are as important, or possible more important, to the development of Open Systems
as the former. A better term for the second category is Specification.

Open Systems Governance - Bodies such as OASIS, OMG and W3C govern the
evolution of Open Systems. They do this by publishing consensus-based Specifica-
tions which have the property that companies can reasonably trust that versions of
the Specifications will be adhered to by other suppliers and can base a business-case
on delivering to those Specifications. These bodies are basically developing spec-
ifications for middleware. Application specific bodies also exist (e.g AUTOSAR,
OGF) which specialise in domain-specific standards, also essential to the evolution
of Open Systems.

3 The Benefits

Many of the benefits of Open Systems are already realised in the commercial sec-
tor, where standards for such things as databases, documents and messaging have

4



enabled the rapid evolution of enterprise computing and of the web. This is inde-
pendent of, but substantially supported by, the Open Source community who, as
well as adhering to commercial standards, publish the entire corpus of their work
for anyone to use under, usually very generous, open licences.

The advantages of Open Source include the belief that one is not dependent on
any one supplier as a sole-source, since there are no secrets and in theory one could
commission anyone to maintain an Open Source product on which your business
has come to rely.

The Open Systems community is a little different, because proprietary components
are supplied into solutions in this area. It is just the interfaces to those components
that are open. In order to be equally confident of supply, a business needs to
be confident that they could commission enhanced functionality from anyone who
could economically supply add-ons to the proprietary components.

Notwithstanding this distiction between Open Systems and Open Source, many of
the benefits of Open Source can be realised by Open Systems. The benefits are
not only to the customer for the solution, but also to the suppliers of its compo-
nents, who will realise both increased markets and reduced costs. The benefits are
summarised in the following table and elaborated on in the following paragraphs.

Reduced Whole Life Cost

Reduced Schedule for each Iterate

Reduced Incumbency, Wider Supplier Base

Greater Potential for Innovation

Greater Resilience

More Rapid Capability Insertion

Potential for Evolution from Legacy

Opportunities for Test and Acceptance Cost Reduction

Potential for Improved Interoperabiity

Potential to Exploit COTS

Commonality across currently Separate Domains

Most Practical Approach to Systems of Systems

Figure 3. Twelve Benefits of Open Systems

Reduced Whole Life Cost. The reasons why we might realise reduced costs for
a large system throughout a long life of evolutionary change are many and various.
The overriding reason is that, because the Architecture and the Interface Speci-
fications are agreed by consensus, the boundaries that these agreements establish

5



maintain a high degree of consistency in the solution and a looseness of coupling in
the solution, that in turn enables the relatively straightforward insertion of enhanced
functionality.

Reduced Schedule for each Iterate. The life of an Open System (indeed,
any large system) is one of frequent evolutionary change. Not only is the cost of
each iterate reduced, but the time to delivery is also reduced. Indeed, some of
the suppliers’ benefit is in the reduced cost. Again, it is the imposed looseness of
coupling that is responsible for this reduced schedule.

Reduced Incumbency, Wider Supplier Base. With propietary solutions, the
customer becomes dependent on an incumbent supplier. With Open Systems the
customer can anticipate buying essential business evolution from independent sup-
pliers. One or more of those suppliers will supply components into the infrastructure
layers. More important for the customer is the components supplied into the ap-
plication layer, where their business differentiation lies and where their potential
for increased competitiveness is realised. It is essential for the customer that these
application layer modules are not single source.

Greater Potential for Innovation. Because Open Systems bring many more
people into roles where they can contribute to evolution of a solution (not least
because many more suppliers are engaged) there is much greater prospect for inno-
vation in that new ideas have a realistic prospect of being prototyped and market-
tested. This is certainly true of Open Source, where the many-eyes aspect of that
domain contributes to so many of its quality attributes.

Greater Resilience. There are also many reasons why an open solution is more
resilient. One is that reusable components have parts to play in more than one
solution and so they mature more quickly. Another is that, because open systems
are a reliable way of evolving from legacy systems, they can inherit the reliability
of those legacy components that are retained. But mostly it is the consistency
and concreteness of the Architecture and its encouragement of loose coupling, that
leads to solutions with greater resilience.

More Rapid Capability Insertion. For the customer the big prize is often
the ability to realise business evolution quickly, in order to take maximum benefit
from their market position. An Open System has to be designed with evolution at
its heart. The standards that the interfaces implement have to be able to evolve
independently. The consequence is that significant enhancements in delivered capa-
bility can be realised by upgrading only one or two components, leaving the others
unchanged, and with full backward compatibility.

Potential for Evolution from Legacy. Open Systems are achieved by refactor-
ing legacy systems into reusable components, which are given open interfaces and
reestablished on an open infrastructure. This opening of legacy systems maintains
the investment in existing business critical components while releasing the potential
for change afforded by Open Systems. Where a legacy system is proprietary, the
supplier has to be convinced that opening makes business sense.

Opportunities for Test and Acceptance Cost Reduction. Both modularity
and openness contribute to significant potential to realise reduced costs in Test
and Acceptance. Modularity is essential if modular reasoning is going to be used,
which allows some if not all of the evidence that a solution is fit for purpose to

6



be reused when a new case has to be made for an enhanced system. Openness
maintains the looseness of coupling and relative independence of the components
which, to a large extent, ensures that regression testing will be uneventful and hence
of considerably reduced cost. Of course, neither modularity nor openness obviate
the need for regression testing.

Potential for Improved Interoperabiity. Large systems have significant ex-
ternal as well as internal communications requirements. The use of open standards
on external communications is what increases the potential for improved interoper-
ability. The open standards do not refer only to the protocols but also the message
contents. Where these interoperability requirements are domain specific, there is
the need for governance of the standards that dictate the application level corre-
spondence.

Potential to Exploit COTS. This almost goes without saying. Of course one
uses COTS in open systems, but these are normally only available in the infrastruc-
ture layers and for generic application level components (document handling, for
example). In general, infrastructures should be built exclusively from COTS. One
could actually reverse this statement and say that the infrastructure is the sum total
of the COTS used in the system. The COTS supply the environment in which the
domain-specific applications are deployed. That’s also why it is the application layer
where all the action is, in Open Systems.

Commonality across currently Separate Domains. The economies of scale
that can be realised by deploying the same components or the same subsystems
across separate domains, such as separate parts of an organisation, are one of the
main reasons for building Open Systems and deploying reusable components. It
means that requirements capture may need to be done across a broader part of the
organisation than just the part that is being evolved. Considering a broader domain
affords the opportunity to increase commonality across an organisation.

Most Practical Approach to Systems of Systems. Systems are always de-
ployed into existing systems, whether they are open or not. Conversely, the compo-
nents of a System of Systems are systems themselves, but considered as black boxes
by the Systems of System architect.These components however present interfaces
to the System of Systems and these interfaces will be the more versatile if they are
open and the System of Systems realises the benefits of Open Systems enjoyed by
the deployed components

There may be more benefits than I have listed here, and certainly the above are
neither in rank order nor mutually exclusive. Of course, there is a downside to Open
Systems and that is what we cover next

4 The Blockers

Not all systems are Open Systems. The reasons for this are also many and
various. Here we address some of those that we have encountered.

7



Initial Cost

Suppliers Perception of their Future Business

Inherent Complexity of Domain

Specific Domain Issues (Safety, Security etc.)

Interoperability with Legacy Installation

Figure 4. Five Blockers of Open Systems

None of these blockers are essentially cases against Open Systems. Indeed, in
many of these cases one can argue that the perception of a case against Open
Systems is just plain wrong and that the best way to overcome the blockage is to
build the solution as an Open System from the start. But this is a perceived risk
that many organisations are afraid to take. Either they lack courage, or simply,
understandably, take a short-term view in that the prospect for early income from
a project overrides the potential for posibly larger future profits.

Initial Cost - To make a system open, either from scratch or by refactoring a
legacy system, will have an initial cost. There is additional work to do in estab-
lishing an architecture that is suited to evolution and innovation in the application
domain. There is additional work to do in giving precise specification to the in-
terfaces and in establishing the governance that will maintain the consistency and
managed evolution of these specifications. This initial cost has to be recovered
from the through-life savings (including opportunity costs) that can be made. An
unwillingness to incur this initial overhead increases the likelyhood that an initial
solution will not be open.

Suppliers Perception of their Future Business - Companies that already
supply into a market need an incentive to make their systems open. They need to
see that it will enhance their own market position to allow others to share what
might be considered proprietary IP. It can be difficult to establish a plan, with
acceptable risk, that allows others to compete as well as collaborate and innovate.
Yet it is precisely this willingness to relinquish control that has seen Open Systems
(Open Source, in particular) be successful in many markets. The lack of incentive to
take this risk can often block the introduction of Open Systems into new markets.

Inherent Complexity of Domain - Some application domains are inherently
complex, especially those domains that are either very large or very new. This
complexity establishes a hurdle that leads designers into tightly-coupled solutions
that concentrate on delivering functionality, over adequate consideraration of whole-
life evolution. The extra resource that would be require to make an Open System in
this situation is not available, because the risk of failing to deliver an initial solution
is thought to be too great.

Specific Domain Issues (Safety, Security etc.) - One significant aspect of
additional complexity is that some domains have overarching NFRs, such as real-
time performance, safety, security etc. These NFRs drive the design, rather than the
consideration of through-life cost. Often, such NFRs are considered non-modular

8



and so the solution that is arrived at doesn’t have a modular structure that lends
itself to loose coupling. Yet, such systems will still have the need for innovation and
through-life evolution that will benefit from an open solution. Architects need to find
solutions to these NFR dominated domains that are open and can reaise the benefits
of Open Systems, not least the modular reasoning that supports accreditation and
certification in these domains.

Interoperability with Legacy Installation - We have major investments in
legacy applications which must form part of any future solution. Consequently, there
is a tendancy towards interfacing with these legacy applications in the way that these
applications were designed to work, often using proprietary or unusual protocols.
This need to interoperate can dominate the decisions as to which technologies
and which protocols to use and these my not be open or openable. Again, the
extra investment (and risk) needed to establish an Open System around legacy
components is an act of faith on the part of the architect.

There will be other blockers and indeed, in a commercial sense, one would only
make a solution open if there was a good business case for doing so. We will discuss
later the various business models that have incentivised the pursuit of Open Systems
in many domains (not least Open Source) but first we will look at the principles
that an architect wanting to establish an open solution must follow and the methods
that they might use to do this.

5 The Principles

In order to establish an Open Architecture, architects will adopt and follow
certain principles. We list some of those here.

Figure 5 shows a typical Application Architecture. This is the arrangement of plug-in
components that form the application capability. It is effectively the interoperation
of the top-level components shown in Figure 2, embedded in the lower layers of
infrastructure. In practice, of course, a similar pattern of components will be con-
sidered at each level, with that arrangement providing capability to the level above.
But, in practice, the sedimentary lower layers, built largely from COTS, will already
be open, so it is at the uppermost, application level that the architects must work
to achieve overall openness.

Figure 5. An Application Architecture showing application specific interfaces.

9



Architecture at this level is a difficult creative process and consequently on that
is iterative in nature. An architecture team need a shared model around which to
develop these interations. Capturing this model is the subject of the next section.
There are generic principles of Open Systems that the architects must follow in
order to achieve a suitable level of openness. These are listed below and elaborated
upon in the ensuing paragraphs.

Be designed for Modularity, Reuse and Vision

Have fully Specified and Precise Interfaces

Be constrained by Application Specific Governance

Achieve Loose Coupling

Have a granularity that enhances Evolution potential

Have a Recursive Architecture

Have Generalised Components, for Commonality across Domains

Exploit Legacy Assets

Figure 6. Eight Principles of Open Systems

Each of the principles listed in Figure 6, and elaborated below, should be read
with the prefix - An Open System will ... These principles are not in any significant
order, nor are they complete, but we do think they are important and can form the
core of guidance for Open System Architecture.

Be designed for Modularity, Reuse and Vision - An Open System will be a
modular construction where the architects have specifically chosen the granularity
of the decomposition and the capabilities of the components to realise an evolving
family of solutions towards an eventual Vision system. Establishing this Vision sys-
tem and choosing the granularity are key aspects of creating a long-life architecture
with potential for innovative enhancement. This is the Architecture.

Have fully Specified and Precise Interfaces - The nature of openness requires
that some things are fixed, at least in the sense that their evolution is understood
and managed. It is the Interfaces to the components that must have this property, in
order to ensure that suppliers can have confidence in the market for their innovative
components. The architects must establish the means whereby these interfaces are
determined and specified. A precise specification is required, which would include
an abstraction from the (service-oriented) behaviour of the components as well as
the syntax of how their capability is invoked. These are the Specifications.

Be constrained by Application Specific Governance - The Architecture and
the Specifications will be documented and the evolution and authenticity of these
documents will need to be managed by a body that can be trusted to provide a
public service. Establishing this governance is as much a part of creating an Open
System as the more technical design and specification tasks.

10



Achieve Loose Coupling - To realistically maintain its openness, the Open Sys-
tem must have the property that making evolutionary and innovative enhancements
in capability has impact on a minimum number of components. Loose-coupling of
components is required to afford this requirement. One way in which loose-coupling
can be tested is by showing that components can be removed with only small impact
on the capability of the system as a whole. Similarly, enhanced components can
replace existing components, again with minimal impact on the general functionality
of the system.

Have a granularity that enhances Evolution potential - Consideration of the
level of granularity needs to take into account prospects for evolution. Some com-
ponents, providing generic services, may be very large (e.g capability servers) while
others providing specific detailed functionality may be very small (e.g. algorithms).
Architecture Patterns will provide the means for designing this parametric form of
modularity.

Have a Recursive Architecture - This may sound a little technical, but it is
essential. A recursive architecture is one where the interfaces to one component
look sufficiently like the interfaces to another, that the one can replace the other.
This is particulary true when a collection of components (a subsystem) can be
treated as if it was a single component, for the purposes of plugging it into an
existing assembly. For example, a single server might be replaced by a cluster of
servers. Making the interfaces sufficiently generic that this particular aspect of mix
and match is possible, is where the potential for innovation lies, and where many
of the benefits of Open Systems will be realised.

Have Generalised Components, for Commonality across Domains - In
addition to making the components repaceable for the purposes of enhancement of
a single solutuion, the architects should endeavor to make them sufficiently general
that they can be exploited across many domains. They can become the COTS of
the future.

Exploit Legacy Assets - Far from ignoring existing solutions, the architect for
an Open System should look to exploiting legacy components as much as possible.
This will mean that legacy infrastructures will need to be openned and reusable
components identified. These components will need to be fitted with adaptors to
bring them into the new Open Architecture, but that should not be considered a
secondary or unimportant task. The legacy solutions are the principal source of
leverage. The issue for the architect is how to avoid the trap of being enticed by
proprietary protocols and how to effectively replace these with open ones.

6 The Methods

Architects developing Open System Architectures need methods and tools to collab-
orate and communicate an evolving design and to maintain that capability through-
out the life of the Open System. This is where the notions of Specifications,
Standards and Governance have their role. The methods and tools are deployed in
order to ensure that this through life requirement is met.

11



Establish Vision System

Devise Architecture Description

Devise Application Components

Check Completeness and Consistency

Use Modular Reasoning

Map Legacy Assets

Establish Governance Methods

Figure 6. Methods used for Open Systems Architecture development

The tasks listed in Figure 6 are elaborated below, with some indication of the
methods to be deployed and the types of tools to be used in accomplishing these
tasks. Central to the architects’ task is the need to maintain up-to-date and con-
sistent shared models of the solution. These shared models are documents, so the
adoption of standard notations and types of document is fundamental. Conse-
quently, that is a theme that permeates these methods.

Establish Vision System - Capturing the Vision System and interim goals as a
series of plausible Capability Builds is the objective of this task. Some type of Gannt
chart should be used to illustrate the timeline but this needs to be accompanied by
sufficiently detailed descriptions of the builds that stakeholders can be convinced
that the direction is the right one. The language of description for these increasingly
elaborate targets is the language of capability requirements, although that should be
augmented by some details of the openness to be achieved, not least by showing the
anticipated evolution of components within an Open Architecture. The first interim
target is then the subject of the first attempt at developing an Open System.

Devise Architecture Description This is where the architects would be ex-
pected to choose, refine and then deploy ans Architecture Description Language. It
is likely, for large systems of the type envisaged here, that the ADL will be based
on standard notations such as UML or SysML, adopted within a framework that
enumerates the document types to be produced and documentation standards to
be adopted. The use of Architecture modelling tools should be determined, in
particular how these are going to be used generate and validate the developing doc-
umentation. The use of XML as a documentation as well as interchange standard
should be considered, not least because many architecting tools support that and
this is a rapidly developing field of eandeavour.

Devise Application Components - The principal focus of devising an Open
System is to determine the set on components that are going to procured and
to give precise and complete descriptions to their interfaces at a suitable level of
abstraction. This is where it is not sufficient to have chosen and ADL but it is
essential to specialise that ADL (i.e. choose from among it many concepts) so that
the boundaries of these components are clearly delineated and the interfaces clearly
enumerated. The architect must seek generality. One way to show that this has been

12



achieved is to demonstrate the deployment of components in different combinations
or arrangements to achieve different capabilities. These deployment/build scenarios
should be used to test the openness of the components. The interfaces should be
specified to a sufficient level of detail that plausible arguments as to their efficacy
can be given.

Check Completeness and Consistency - Another role for (a different type of)
scenario is one of checking the specification of components for completeness and
consistency. The architecture team should always be checking. They should not
expect the design to be consistent at early stages, any more than they would expect
it to be complete, but they should be aware of where the inconsistencies and incom-
pletenesses are are always working towards eliminating them. This formal validation
of the design can be supported, to some extent, by contemporary architecture tools,
but the architects need to be judicious in their choice of such tools, which can be
very resource-hungry.

Use Modular Reasoning - Open Systems add to the potential for exploiting
modularity in the context of using modular reasoning for creating cases required for
testing, accreditation and certification. The additional potential, beyond modularity,
is related to the fixedness of (generations of) interface specifications and of the
prospect for reasoning about (implementations of) these interfaces independently.
The tools exist for constructing claim-argument-evidence based, sound arguments
that a component satisfies its obligations and that assemblies of components satisfy
theirs. The architecture of the Open System can be organised to support this
prospect, by ensuring that the needs of modular reasoning are addressed thoughout.

Map Legacy Assets - Large systems are created by developing legacy assets.
Thus it is essentila that the architects Reverse Engineer existing systems in order
that they can develop an architecture which will embrace these assets as components
in the poropsed solution. The methods for reverse engineering an architecture are
simply to use the architecture description techniques adopted for the new system
as a means of capturing a plausible description of the legacy asset. This act of
Asset Mapping amounts to a rational reconstruction of the existing system and
affoirds the means whereby, ownership permitting, it can be openned for harvesting
of components.

Establish Governance Methods - The architects have a significant role in the
scheme set up to develop the specifications. They will determine the structure of
committees, because that will reflect the architecture. They will determine the
documents that these committees will process and eventuallly sign-off. The archi-
tecture description techniques that they choose to use will have toi be chosen in
such a way that the governance process is effective and (cost) effective.

This report concentrates only on the architecture process and does not venture
into the implementation or acceptance processes. Nevertheless, it is essential, as
the above comments suggest, that the architects design something that is open,
whose openness is testable and which can be built and tested in a cost-effective
manner. The choice of methods in the areas outlined above should always bear in
mind the realiity of the implementation process.

13



7 The Business Models

Resistance to Open Systems from companies is often related to the fact that
their business model is based around their exploitation of IP and opening that, or
part of it, to public scrutiny could have a damaging effect on their income. However,
there are also many examples of organisations that have developed business models
around Open Systems that either increase their income or reduce their costs, or
both, with a positive effect on the bottom line. For an organisation to choose to
open part, or all, of their IP to public scrutiny requires that they develop a business
model that makes this an acceptable risk

The following business models are based partly on Open Source (where the models
have been well documented) and partly on the Open Systems that are found in
contemporary infrastructures. Not all of these are unique to Open Systems, but our
comments will concentate on the openness dimension.

Sell more Infrastructure because others supply innovative plug-ins

Give away the platform, sell the applications

Sell more solutions because of the potential for innovation

Reduce costs because of potential for reuse and outsourcing

Reduce costs because of potential for commonality

Give away system, sell support

Figure 7. Business Processes

By and Large, these business models are self-explanatory. In the following I will
restrict myself to a few brief comments, with the intention of expanding on these
in a separate paper.

Sell more Infrastructure because others supply innovative plug-ins - For
example, this is what encourages the supplier of a proprietary operating system
to maintain the openness of their infrastructure, because other suppliers supply
innovative components that enhances the appeal of the operating system. The
infrastructure and component supplier are in a symbiotic relationship, where each
enhances the income of the other. This only works because of the openness of the
interfaces. Although the governance is not open, its essential propery of fixedness
is guaranteed by the market.

Give away the platform, sell the applications (or the service) - In an extreme
case of separating the appliactions from the infrastructure, you can afford to give
the infrastructure away if customers pay for their use of it (e.g. mobile phones).
This only works because openness is assured.

Sell more solutions because of the potential for innovation - The customer
is persuaded to buy because this is an Open System and they can expect more
innovation, more rapid evolution and competitive costs because there is a market in

14



components. The supplier must create a business model that sees a suitable bottom
line from a combinatuion of more sales (of a lesser capability) and reduced costs.

Reduce costs because of potential for reuse and outsourcing - Components
can be more economically adopted if they already exist or if they can be procured
from outside organisations.

Reduce costs because of potential for commonality - The developer of
components can more readily realise their investment if the same component can
be used across many solutions. This is a key attribute of Open Systems.

Give away system, sell support - The familiar business model from Open
Source, where customers are prepared to pay for the skills required to develop so-
lutions based on the Open Architecture, but value the independence of sourcing
that they anticipate accompanies the fact that they (or their alternative supplier)
can have access to the source code of the solution. Much the same business model
appplies to Open Systems which include proprietary components, when those com-
ponents are built to standard interfaces and can potentially be sourced from multiple
suppliers.

There are, of course, as many business models as their are businesses. Open
Systems present an opportunity for suppliers to meet the needs of customers with
rapidly evolving business needs, where the risks that the customer anticipates in
their business are mitigated by the prospect of rapid deployment of new capability
and where the prospects for the supplier are enhanced through increased demand
and reduced costs.

8 Conclusions

The purpose of this note has been to begin to document the concepts of Open
Systems and Open Architectures.

We have enumerated the benefits and the blockers to Open Systems. We have
described some of the principles and introduced some of the methods that an archi-
tecture team would adopt when developing an Open Architecture. We have argued
that Open Systems will lead to more rapid evolution, to more resilient solutions and
to economies of scale and schedule.

The methods outlined here need further elaboration and that will be the subject
of a subsequent paper on Architecture Methods.

An extensive bibliography accompanies this paper. It is annotated and will be
kept up-to-date. It is available, along with this paper, at http://openpdq.com/OpenSystems

15


