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ABSTRACT 
When component parts of distributed systems need to 
reach agreement, arriving at consensus is difficult if 
some components don’t behave properly.  The Byzantine 
Generals Problem described by Lamport and others 
exemplifies the difficulty. 
In a real situation, components don’t know which of their 
peers are faulty and hence they cannot apply the 
algorithms of Lamport et al, nor even decide if a suitable 
algorithm exists. 
This paper discusses options available in this situation 
and describes how a good expectation of arriving at a 
consensus can be achieved without knowing for certain 
which or how many participants are behaving badly. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: 
Distributed Systems – Distributed Applications; D.4.5. 
[Operating Systems]: Reliability – fault tolerance  

General Terms 
Algorithms, Design, Reliability. 
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1. INTRODUCTION 
We have mature middleware for building such 
applications [5, 7-9] from interacting components [6].  
Components generally assume their information is 
correct but the size of modern systems means this is no 
longer reasonable.   
Some problems can solved with approaches like belief 
maintenance systems [2] or DataWarp [3] but sometimes 
inconsistencies have to be eliminated.     
The Byzantine Generals Problem (BGP) described by 
Lamport et al [4] exemplifies the difficulty of arriving at 
a consensus in the presence of bad behaviour.  It 
describes the conditions which have to be met if there is 
to be a solution and algorithms which provide achieve a 
solution for a specified number of rogues.  However, in 

reality the participants do not know how many rogues are 
present and hence they can never guarantee they will 
arrive at a consensus. 
Fortunately, the fact that it cannot be guaranteed doesn’t 
imply that agreement will not be achieved. 
 

2. BGP AND THE OM ALGORITHM 
BGP concerns Generals surrounding a city who are 
trying to decide whether to attack.  Each judges whether 
a concerted attack would succeed and they then have to 
distribute these opinions in such a way that a few rogue 
Generals can neither influence the decision (unduly) nor 
cause disagreement.  
Lamport et al [4] provide a comprehensive analysis of 
the problem.  They prove loyal Generals must outnumber 
the rogues by more than two to one for it to be possible 
to guarantee a correct decision  They also provide 
algorithms (OMx) which guarantee the result in the face 
of no more than x rogues.  
 

3. THE REAL SITUATION 
The critical factor in selecting the algorithm is number of 
rogue participants but this number is not known.  The 
participants could use the algorithm which is proof 
against the most rogues their number is able to defeat but 
this doesn’t guarantee a correct result and the algorithms 
become greatly more complex with the number of 
rogues. 
Alternatively they can estimate the number of rogues 
using knowledge of the likely failure rates of their peers.  
Assuming the probability of failure is reasonably small, 
the likelihood of two or more rogues amongst the group 
is very small suggesting that using an algorithm which is 
proof against two might a waste of effort. 
 

4. USING OM1 IN PLACE OF OM2 
Considering a group of seven, OM1 ensures a consensus 
in the presence of zero or one rogues and it is impossible 
to guarantee a correct result if there are three or more.  
OM2 guarantees the result if there are two rogues. 
These algorithms use layers of message forwarding and 
voting.  In OM1, there is one layer of message 
forwarding:  each participant sends a message to each of 
the others and forwards each original message they 
receive.  Each participant receives six messages in the 
style of, “I say x” and thirty messages which say, “He 
told me y”, a total of 6 + 6x5 = 36 each, 252 messages in 
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total.  For OM2, the total is 1092, more than four times 
as many.  Since the probability that this extra assurance 
will apply is small and what the group really wants to 
know is how often they actually achieve the correct 
result, it appears this could be a waste of effort. 
Let us consider seven Generals using OM1, label them 
A, B, … G and assume B and C are rogues.  Suppose A 
sends b to B, c to C, etc.  The good participants pass on 
values faithfully so A’s messages to D,E,F,G are 
reported accurately and the messages b,c,..g will have the 
same value so each of the other good participants 
receives the correct value from A four times (once direct 
and three accurate reports from others), plus two reports 
via the rogues.  Clearly, there is nothing the rogues can 
do to induce D,E,F,G to any value other than that truly 
sent by A – they would be outvoted by at least four to 
two. See Table 1. 
   

 A B C D E F G 
A        
B b  C1 D e f g 
C c b1  D e f g 
D d b2 C2  e f g 
E e b3 C3 D  f g 
F f b4 C4 D e  g 
G g b5 C5 D e f  

Table 1: Messages of OM1 

The rogues can only create mayhem with their own 
values but as there are just two of them, they can only do 
so if the others are evenly divided.  If the good 
participants are divided three to two, the rogues can 
achieve a pyrrhic victory by swinging the decision but 
the good participants still achieve a consensus.  To really 
disrupt the process, the rogues need to induce 
disagreement in the others which is more difficult.   
 

5. EXPERIMENTAL RESULTS 
We have carried out experiments using implementations 
of the OM algorithms in which participant applications 
communicate using message passing [1, 5]. 
Probabilities for bad behaviour were selected to create 
experiments in which the long run mean number of 
rogues is 0, 1, 2 or 3.  For the experiment reported, the 
rogues behaviour was to insert some chosen value into 
every message they send regardless of what they receive.  
Table 2 shows the results from 1000 runs and confirms 
that, for this style of bad of our rogues, there is no 
advantage to using OM2. 
 

Correct Results Probability of 
Traitor A 

Mean No. 
Traitors 

OM1 OM2 

0 0 1000 1000 
1/7 1.03 1000 993 
2/7 2.01 992 954 
3/7 2.96 996 914 

Table 2: Results of 1000 runs 

These results confirm that OM1 provides much better 
protection against the bad behaviour in a distributed 
agreement exercise than its guarantee to frustrate just one 
rogue would suggest and further suggests that there is no 
worthwhile return for the considerable additional effort 
of using OM2. 
 

6. CONCLUSION 
In contrast with the theoretical situation studied by 
Lamport et al, in a real distributed system participants 
can only estimate the number of faulty members present 
in a group.  Nevertheless, it is still possible to achieve a 
reasonable expectation of a correct result to a distributed 
agreement problem. 
For the particular circumstances examined, OM2 appears 
to offer better protection by guaranteeing a correct result 
if there are as many as two faulty processes where OM1 
only protects against one.  However but this small 
assurance comes at a cost of more than four times the 
effort and in a practical experiment it was overwhelmed 
by other circumstances. 
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