
Selecting a distributed agreement algorithm

Robert John Walters
University of Southampton
Highfield, Southampton,

United Kingdom
rjw1@ecs.soton.ac.uk

Peter Henderson
University of Southampton
Highfield, Southampton,

United Kingdom
ph@ecs.soton.ac.uk

Stephen Crouch
University of Southampton
Highfield, Southampton,

United Kingdom
stc@ecs.soton.ac.uk

ABSTRACT
When component parts of distributed systems need to
reach agreement, arriving at consensus is difficult if
some components don’t behave properly. The Byzantine
Generals Problem described by Lamport and others
exemplifies the difficulty.
In a real situation, components don’t know which of their
peers are faulty and hence they cannot apply the
algorithms of Lamport et al, nor even decide if a suitable
algorithm exists.
This paper discusses options available in this situation
and describes how a good expectation of arriving at a
consensus can be achieved without knowing for certain
which or how many participants are behaving badly.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems – Distributed Applications; D.4.5.
[Operating Systems]: Reliability – fault tolerance

General Terms
Algorithms, Design, Reliability.

Keywords
Distributed agreement, Byzantine Generals Problem.

1. INTRODUCTION
We have mature middleware for building such
applications [5, 7-9] from interacting components [6].
Components generally assume their information is
correct but the size of modern systems means this is no
longer reasonable.
Some problems can solved with approaches like belief
maintenance systems [2] or DataWarp [3] but sometimes
inconsistencies have to be eliminated.
The Byzantine Generals Problem (BGP) described by
Lamport et al [4] exemplifies the difficulty of arriving at
a consensus in the presence of bad behaviour. It
describes the conditions which have to be met if there is
to be a solution and algorithms which provide achieve a
solution for a specified number of rogues. However, in

reality the participants do not know how many rogues are
present and hence they can never guarantee they will
arrive at a consensus.
Fortunately, the fact that it cannot be guaranteed doesn’t
imply that agreement will not be achieved.

2. BGP AND THE OM ALGORITHM
BGP concerns Generals surrounding a city who are
trying to decide whether to attack. Each judges whether
a concerted attack would succeed and they then have to
distribute these opinions in such a way that a few rogue
Generals can neither influence the decision (unduly) nor
cause disagreement.
Lamport et al [4] provide a comprehensive analysis of
the problem. They prove loyal Generals must outnumber
the rogues by more than two to one for it to be possible
to guarantee a correct decision They also provide
algorithms (OMx) which guarantee the result in the face
of no more than x rogues.

3. THE REAL SITUATION
The critical factor in selecting the algorithm is number of
rogue participants but this number is not known. The
participants could use the algorithm which is proof
against the most rogues their number is able to defeat but
this doesn’t guarantee a correct result and the algorithms
become greatly more complex with the number of
rogues.
Alternatively they can estimate the number of rogues
using knowledge of the likely failure rates of their peers.
Assuming the probability of failure is reasonably small,
the likelihood of two or more rogues amongst the group
is very small suggesting that using an algorithm which is
proof against two might a waste of effort.

4. USING OM1 IN PLACE OF OM2
Considering a group of seven, OM1 ensures a consensus
in the presence of zero or one rogues and it is impossible
to guarantee a correct result if there are three or more.
OM2 guarantees the result if there are two rogues.
These algorithms use layers of message forwarding and
voting. In OM1, there is one layer of message
forwarding: each participant sends a message to each of
the others and forwards each original message they
receive. Each participant receives six messages in the
style of, “I say x” and thirty messages which say, “He
told me y”, a total of 6 + 6x5 = 36 each, 252 messages in

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. SAC’07, March 11-15, 2007, Seoul,
Korea.
Copyright 2007 ACM 1-59593-480-4 /07/0003…$5.00.

total. For OM2, the total is 1092, more than four times
as many. Since the probability that this extra assurance
will apply is small and what the group really wants to
know is how often they actually achieve the correct
result, it appears this could be a waste of effort.
Let us consider seven Generals using OM1, label them
A, B, … G and assume B and C are rogues. Suppose A
sends b to B, c to C, etc. The good participants pass on
values faithfully so A’s messages to D,E,F,G are
reported accurately and the messages b,c,..g will have the
same value so each of the other good participants
receives the correct value from A four times (once direct
and three accurate reports from others), plus two reports
via the rogues. Clearly, there is nothing the rogues can
do to induce D,E,F,G to any value other than that truly
sent by A – they would be outvoted by at least four to
two. See Table 1.

 A B C D E F G
A
B b C1 D e f g
C c b1 D e f g
D d b2 C2 e f g
E e b3 C3 D f g
F f b4 C4 D e g
G g b5 C5 D e f

Table 1: Messages of OM1

The rogues can only create mayhem with their own
values but as there are just two of them, they can only do
so if the others are evenly divided. If the good
participants are divided three to two, the rogues can
achieve a pyrrhic victory by swinging the decision but
the good participants still achieve a consensus. To really
disrupt the process, the rogues need to induce
disagreement in the others which is more difficult.

5. EXPERIMENTAL RESULTS
We have carried out experiments using implementations
of the OM algorithms in which participant applications
communicate using message passing [1, 5].
Probabilities for bad behaviour were selected to create
experiments in which the long run mean number of
rogues is 0, 1, 2 or 3. For the experiment reported, the
rogues behaviour was to insert some chosen value into
every message they send regardless of what they receive.
Table 2 shows the results from 1000 runs and confirms
that, for this style of bad of our rogues, there is no
advantage to using OM2.

Correct Results Probability of
Traitor A

Mean No.
Traitors

OM1 OM2

0 0 1000 1000
1/7 1.03 1000 993
2/7 2.01 992 954
3/7 2.96 996 914

Table 2: Results of 1000 runs

These results confirm that OM1 provides much better
protection against the bad behaviour in a distributed
agreement exercise than its guarantee to frustrate just one
rogue would suggest and further suggests that there is no
worthwhile return for the considerable additional effort
of using OM2.

6. CONCLUSION
In contrast with the theoretical situation studied by
Lamport et al, in a real distributed system participants
can only estimate the number of faulty members present
in a group. Nevertheless, it is still possible to achieve a
reasonable expectation of a correct result to a distributed
agreement problem.
For the particular circumstances examined, OM2 appears
to offer better protection by guaranteeing a correct result
if there are as many as two faulty processes where OM1
only protects against one. However but this small
assurance comes at a cost of more than four times the
effort and in a practical experiment it was overwhelmed
by other circumstances.

7. REFERENCES
[1] A. Dickman, Designing Applications With Msmq:

Message Queuing for Developers: Addison Wesley
Publishing Company, 1998.

[2] N. Friedman and J. Y. Halpern, "Belief Revision: A
Critique," Journal of Logic, Language and
Information, vol. 8, pp. 401-420, July 1999.

[3] P. Henderson, R. J. Walters, S. Crouch, and Q. Ni,
"DataWarp: Building Applications which make
Progress in and Inconsistent World," in 4th IFIP
WG 6.1 International Conference, Distributed
Applications and Interoperable Systems (DAIS
2003), Paris, 2003, pp. 167-178.

[4] L. Lamport, R. Shostak, and M. Pease, "The
Byzantine Generals Problem," ACM Transactions
on Programming Languages and Systems, vol. 4,
pp. 382-401, 3rd July 1982.

[5] Microsoft, "Microsoft Message Queuing Services,"
Microsoft, 2001.

[6] L. Nicolle, "John Taylor - The Bulletin Interview,"
The Computer Bulletin: British Computer Society,
1999.

[7] R. Sessions, COM and DCOM - Microsoft's Vision
for Distributed Computing: Wiley Computer
Publishing, 1998.

[8] C. Szyperski, Component Software: Longman,
1998.

[9] A. Thomas, "Enterprise JavaBeans Technology,"
Patricia Seybold Group, White Paper prepared for
Sun Microsystems Inc December 1998.

