Selecting a distributed agreement algorithm

Robert John Walters

University of Southampton
Highfield, Southampton,
United Kingdom

riwl@ecs.soton.ac.uk

ABSTRACT

When component parts of distributed systems need to
reach agreement, arriving at consensus is diffidult
some components don't behave properly. The Byzanti
Generals Problem described by Lamport and others
exemplifies the difficulty.

In a real situation, components don’t know whictirair
peers are faulty and hence they cannot apply the
algorithms of Lamport et al, nor even decide itigable
algorithm exists.

This paper discusses options available in thisagan

and describes how a good expectation of arriving at
consensus can be achieved without knowing for icerta
which or how many participants are behaving badly.

Categoriesand Subject Descriptors

C24 [Computer-Communication Networks):
Distributed Systems -Bistributed Applications;D.4.5.
[Operating Systems]: Reliability — fault tolerance

General Terms
Algorithms, Design, Reliability.

Keywords

Distributed agreement, Byzantine Generals Problem.

1. INTRODUCTION

We have mature middleware for building such
applications [5, 7-9] from interacting componen@. [
Components generally assume their information is
correct but the size of modern systems means shi®i
longer reasonable.

Some problems can solved with approaches like fbelie
maintenance systems [2] or DataWarp [3] but sonetim
inconsistencies have to be eliminated.

The Byzantine Generals Problem (BGP) described by
Lamport et al [4] exemplifies the difficulty of &ing at

a consensus in the presence of bad behaviour. It
describes the conditions which have to be metefeahs

to be a solution and algorithms which provide achia
solution for a specified number of rogues. Howewer

Permission to make digital or hard copies of ajpart of

this work for personal or classroom use is grantgdout fee provided th
copies are not made or distributed for profit omoeercial advantage, a
that copies bear this notice and the full citationthe first page. To co
otherwise, to republish, fpost on servers or to redistribute to lists, resg
prior specific permission and/or a fee. SAC'07, bhad145, 2007, Seot
Korea.

Copyright 2007 ACM 1-59593-480-4 /07/0003...$5.00.

Peter Henderson

University of Southampton
Highfield, Southampton,
United Kingdom

ph@ecs.soton.ac.uk

Stephen Crouch

University of Southampton
Highfield, Southampton,
United Kingdom

stc@ecs.soton.ac.uk

reality the participants do not know how many ragaee
present and hence they can negaaranteethey will
arrive at a consensus.

Fortunately, the fact that it cannot be guaranth@esn’t
imply that agreement will not be achieved.

2. BGP AND THE OM ALGORITHM

BGP concerns Generals surrounding a city who are
trying to decide whether to attack. Each judgestiver

a concerted attack would succeed and they then toave
distribute these opinions in such a way that a fegue
Generals can neither influence the decision (urjdudy
cause disagreement.

Lamport et al [4] provide a comprehensive analysis
the problem. They prove loyal Generals must outrerm
the rogues by more than two to one for it to besjids

to guaranteea correct decision They also provide
algorithms (OMXx) which guarantee the result in thee

of no more than x rogues.

3. THE REAL SITUATION

The critical factor in selecting the algorithm ismber of
rogue participants but this number is not knownhe T
participants could use the algorithm which is proof
against the most rogues their number is able teaddfut
this doesn’t guarantee a correct result and therighgns
become greatly more complex with the number of
rogues.

Alternatively they can estimate the number of rague
using knowledge of the likely failure rates of thpeers.
Assuming the probability of failure is reasonabiyad|,
the likelihood of two or more rogues amongst theugr

is very small suggesting that using an algorithnicivtis
proof against two might a waste of effort.

4. USING OM1IN PLACE OF OM2

Considering a group of seven, OM1 ensures a consens
in the presence of zero or one rogues and it i9gsiple

to guaranteea correct result if there are three or more.
OM2 guarantees the result if there are two rogues.
These algorithms use layers of message forwarding a
voting. In OM1, there is one layer of message
forwarding: each participant sends a messagedo e
the others and forwards each original message they
receive. Each participant receives six messageahen
style of, “I say x” and thirty messages which sdye
told me y”, a total of 6 + 6x5 = 36 each, 252 mgssan

total. For OM2, the total is 1092, more than ftiores

as many. Since the probability that this extraiessce

will apply is small and what the group really wants
know is how often theyactually achieve the correct
result, it appears this could be a waste of effort.

Let us consider seven Generals using OM1, labehthe
A, B, ... G and assume B and C are rogues. Suppose A
sends b to B, c to C, etc. The good participaats pn
values faithfully so A's messages to D,EF.G are
reported accurately and the messages b,c,..g avi# the
same value so each of the other good participants
receives the correct value from A four times (odizect

and three accurate reports from others), plus tponts

via the rogues. Clearly, there is nothing the esgoan

do to induce D,E,F,G to any value other than thaiyt
sent by A — they would be outvoted by at least faur
two. See Table 1.

Table 1: Messagesof OM 1

The rogues can only create mayhem with their own
values but as there are just two of them, theyordy do

so if the others are evenly divided. If the good
participants are divided three to two, the roguas c
achieve a pyrrhic victory by swinging the decisiont

the good participants still achieve a consensusredlly
disrupt the process, the rogues need to induce
disagreement in the others which is more difficult.

5. EXPERIMENTAL RESULTS

We have carried out experiments using implementatio
of the OM algorithms in which participant applicats
communicate using message passing [1, 5].
Probabilities for bad behaviour were selected &a
experiments in which the long run mean number of
rogues is 0, 1, 2 or 3. For the experiment reportiee
rogues behaviour was to insert some chosen vatoe in
every message they send regardless of what thejveec
Table 2 shows the results from 1000 runs and awosfir
that, for this style of bad of our rogues, therenis
advantage to using OM2.

Probability of | Mean No.| Correct Results
Traitor A Traitors

oM1 OoM2
0 0 1000 1000
17 1.03 1000 993
2/7 2.01 992 954
317 2.96 996 914

Table 2: Resultsof 1000 runs

These results confirm that OM1 provides much better
protection against the bad behaviour in a distabut
agreement exercise than its guarantee to frugust®ne
rogue would suggest and further suggests that there
worthwhile return for the considerable additionébe

of using OM2.

6. CONCLUSION

In contrast with the theoretical situation studibg
Lamport et al, in a real distributed system pagptcits
can only estimate the number of faulty membersqmtes
in a group. Nevertheless, it is still possibleatthieve a
reasonable expectation of a correct result to tilised
agreement problem.

For the particular circumstances examined, OM2 agpe
to offer better protection by guaranteeing a carresult

if there are as many as two faulty processes wbalé
only protects against one. However but this small
assurance comes at a cost of more than four tihees t
effort and in a practical experiment it was overlutesl

by other circumstances.

7. REFERENCES

[1] A. Dickman, Designing Applications With Msmq:
Message Queuing for Developefsddison Wesley
Publishing Company, 1998.

[2] N. Friedman and J. Y. Halpern, "Belief Revisign
Critiqgue," Journal of Logic, Language and
Information,vol. 8, pp. 401-420, July 1999.

[3] P. Henderson, R. J. Walters, S. Crouch, andliQQ.
"DataWarp: Building Applications which make
Progress in and Inconsistent World," 4th IFIP
WG 6.1 International Conference, Distributed
Applications and Interoperable Systems (DAIS
2003) Paris, 2003, pp. 167-178.

[4] L. Lamport, R. Shostak, and M. Pease, "The
Byzantine Generals ProblemACM Transactions
on Programming Languages and Systend, 4,
pp. 382-401, 3rd July 1982.

[5] Microsoft, "Microsoft Message Queuing Services,
Microsoft, 2001.

[6] L. Nicolle, "John Taylor - The Bulletin Intersw,"
The Computer Bulletin: British Computer Society,
1999.

[7] R. SessionsCOM and DCOM - Microsoft's Vision
for Distributed Computing Wiley Computer
Publishing, 1998.

[8] C. Szyperski, Component Software Longman,
1998.

[9] A. Thomas, "Enterprise JavaBeans Technology,"
Patricia Seybold Group, White Paper prepared for
Sun Microsystems Inc December 1998.

